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Abstract 
 
This report is the final report of the project "Wind power plant North Sea - Wind Farm 
Interaction" (Windenergiecentrale Noordzee - Parkinteractie; We-at-Sea / BSIK 2005/002; ECN 
79446.01.01). 
In this project a new method has been developed for determining the interaction between a wind 
farm and the prevailing wind. In addition first insights on the impact of a wind farm on the 
downstream wind have been presented. 
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Summary 

Motivation 
Over the years offshore wind farms tend to be placed closer together, as already illustrated by 
OWEZ and Princess Amalia Wind Farm (separated 15 km) in the Netherlands or Horns Rev I 
and II (separated 23 km) in Denmark. Since these separation distances are between 5 and 10 
times the wind farm's horizontal scale, the velocity deficit due to an upstream wind farm may be 
considerable. If so, energy production loss and mechanical load increase are expected to be sig-
nificant. For this reason the dedicated planetary boundary layer method Mesoscale Flow with 
Wind Farming (MFwWF) has been developed, which method computes the interaction between 
a wind farm and the prevailing wind. 

Flow model 

The planetary boundary layer method MFwWF is a CFD method that is based on three princi-
ples. First, neutral planetary boundary layer flow with wind farming essentially is steady and 
two-dimensional; where the convective forces, the Coriolis forces, the vertical and spanwise 
gradients of the turbulent momentum fluxes, and the external forces that represent wind turbines 
all have the same order of magnitude. Second, a numerical representation of the momentum 
equations in the form of backward differences allows for an implicit solution of the two hori-
zontal velocity components in vertical direction, iterating on the turbulent viscosity, and a 
marching solution in the horizontal directions. And third the continuity equation is satisfied by 
employing the Lagrange multiplier method to the velocity components that satisfy the continuity 
equation. 

Because of its mixed implicit/explicit character the planetary boundary layer method MFwWF 
is computationally fast and cheap, which is beneficial for applications in wind farm siting stu-
dies. In that context MFwWF can be used to estimate the effect of nearby wind farms on the 
electricity production of a given wind farm. 

Effect of a wind farm on the prevailing wind 

The planetary boundary layer method MFwWF calculates how a wind farm affects the prevail-
ing wind, or to be more exact, the velocity in a position downstream of a wind farm. To this end 
wind farm parameters as well as meteorological parameters are considered. 

The wind farm parameters include separation distance from and layout of the nearby wind farm, 
as well as hub height and rotor diameter of the wind turbines in that wind farm. The meteoro-
logical parameters include geostrophic velocity, geostrophic height and surface roughness 
length. 

Two of the impact factors are the initial velocity deficit and the velocity recovery distances. The 
initial velocity deficit is a measure of the energy that is removed from the wind and for that rea-
son a measure of the strength of the wake of the wind farm. The velocity recovery distances - 
one in downstream direction and the other in spanwise direction relative to the upstream wind 
direction - measure the distance where the velocity again reaches the upstream value. 
As an example the impact of nominal power density and geostrophic velocity on the initial ve-
locity deficit and the downstream velocity recovery distance was studied for a wind farm which 
consists of 22 wind turbines with a nominal power of 5 MW. 
The initial velocity deficit relative to the upstream velocity is found to decrease with increasing 
geostrophic velocity in general, ranging from 6% (at a turbine separation of 14 rotor diameters) 
to 100% (at a separation of 5 rotor diameters) if the velocity at hub height is halfway cut-in and 
nominal. 

Also the relative velocity recovery distance is found to decrease with the geostrophic velocity, 
from a value of 20 at low geostrophic velocities to a limit value near 0 at high geostrophic ve-
locities, and the relative minimum save distance is found to reach a maximum value of the order 
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of the streamwise wind farm length scale (which maximum is reached at geostrophic velocities 
between 15 m/s and 25 m/s). 

Finally the relative initial velocity deficit is found to decrease with increasing geostrophic ve-
locity, and the largest absolute initial velocity deficit (of in this case 6.3 m/s) is found to occur 
when the hub-height velocity is near nominal. 

Available code 

The code MFwWF calculates the effect of one wind farm on another wind farm by taking the 
entire planetary boundary layer into account. The method has been validated by using measured 
data from large offshore wind farms, and is available for application to other wind farms. 
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1. Introduction 

Over the years offshore wind farms tend to be placed closer together, as already illustrated by 
OWEZ and Q7-WF (separated 15 km) in the Netherlands or Horns Rev I and II (separated 23 
km) in Denmark. Since these separation distances are between 5 and 10 times the wind farm's 
horizontal scale, the velocity deficit due to an upstream wind farm may be considerable (Chris-
tiansen and Hasager, 2005). If so, energy production loss and mechanical load increase are ex-
pected to be significant. For this reason wind farm wake studies have gained attention recently. 
 
In this report we present a new method for determining the interaction between a wind farm and 
the prevailing wind, and first insights on the modification of the wind field. The new method 
calculates average values of the wind speed while taking into account the effect of turbulence, 
and for this reason the first insights on the wind field modification include wind speed deficits 
only. Actual energy production loss or mechanical load increase however are not presented in 
this report. First, section 2 gives a brief description of prior work on modeling wind farm wakes. 
Next section 3 presents a comprehensive description of the new flow model and the correspond-
ing code MWwWF (Mesoscale Flow with Wind Farming), and section 4 addresses the valida-
tion. In addition in section 5 predictions obtained with the flow model are addressed. Finally, in 
section 6 the work is summarized. 
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2. Prior work 

A wind farm wake study requires simulation of mesoscale atmospheric flow together with ener-
gy extraction/redistribution due to wind turbines. In this chapter first we present an overview of 
studies that were published by the year 2007. Next we identify the various approaches in these 
studies and we finish with a critical review of these approaches. 
 
Liu et al., 1983, developed a numerical model based on the primitive equations in order to study 
the behaviour of turbulent wakes behind large-scale wind turbines. This model is based on a 
numerical solution of the Navier-Stokes equations for the planetary boundary layer with the hy-
drostatic approximation, in combination with a Monin-Obukov description of the turbulent dif-
fusivities. To demonstrate the utility of the model, it was applied to three different configura-
tions of wind turbine arrays, among which one wind turbine immediately downwind of another. 
The results of the model simulations were found not only to retrieve major features of turbulent 
wakes observed behind wind turbines but also to compare favorably with corresponding mea-
surements from wind tunnel experiments. 
 
In order to analytically model the effect of a wind farm on the atmospheric boundary layer, 
Hegberg and Eecen, 2002, first estimate the artificial roughness length of the wind farm. Next 
they calculate the internal boundary layer which results from the roughness change due to the 
wind farm. With this information the new turbulent drag force and subsequently the new equili-
brium between the forces (turbulent drag force, the Coriolis force and the pressure gradient 
force) are determined. From that equilibrium the new wind speed and direction are calculated, 
which are found to be quite different from the conditions outside the wind farm. 
 
Frandsen et al., 2004, developed an analytical model for the flow in and near a wind farm. The 
model distinguishes between two flow directions (parallel to the rows in a rectangular wind tur-
bine configuration, and not parallel) and identifies three flow regimes (multiple wakes, merging 
wakes from neighbouring rows, and equilibrium between the wind farm and the boundary 
layer). The multiple wakes model and the merging wakes model were derived from the Lan-
chester-Betz theory, whereas the equilibrium model was derived from the geostrophic drag law. 
The effect of turbulence is included in the modeling of the equilibrium regime only by using the 
skin friction velocity and the surface roughness length. The model is reported to predict offshore 
wind recovery distances in the range between 2 and 14 km. 
 
Hegberg et al., 2004, developed a numerical model in order to study the effect of a wind farm 
on the planetary boundary layer. Similar to their preceding model (Hegberg and Eecen, 2002), a 
wind farm is modeled as surface roughness but now a number of sub-models is proposed to do 
so. In addition they add an innovative element in the form of an atmospheric boundary layer 
model which apart from velocity also takes temperature into account. Turbulence is modeled in 
terms of Reynolds stresses of velocity and temperature so that the door is opened to treating 
small departures from the neutral situation. 
 
Baidya Roy et al., 2004, applied the Regional Atmospheric Modeling System model to explore 
the possible impacts of a large (100x100 km2) onshore wind farm in the Great Plains. This mod-
el solves the full three-dimensional compressible nonhydrostatic dynamic equations, a thermo-
dynamic equation and a set of microphysics equations. The system of equations is closed with a 
Mellor-Yamada scheme that explicitly solves for turbulent kinetic energy while other second-
order moments are parameterized. A wind turbine was approximated as a sink of energy (oper-
ating at a fixed power coefficient of 0.4) and source of turbulence (adding a fixed amount of 
turbulent kinetic energy), and the wind farm was created by assuming an array of such turbines. 
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Results show that the wind farm significantly slows down the wind at the turbine hub-height 
level. 
 
Rooijmans, 2004, simulated the meteorological effects of a large-scale (150x60 km2) offshore 
wind farm in the North Sea by using the MM5 mesoscale model. The wind farm was simulated 
by introducing a higher roughness length (0.5 m) in the area of the wind farm. The meteorologi-
cal effects were examined by comparing model runs with and without wind farm. Turbulent ki-
netic energy, cloud formation, precipitation and wind speed reduction were studied. As to wind 
reduction the MM5 model was found to yield comparable results (in and near the wind farm 
wind speed reduction up to 50% in a high wind speed case) as obtained from a conceptual mod-
el which calculates the reduction of horizontal wind speed from a balance between loss of hori-
zontal momentum and replenishment from above by turbulent fluxes. 
 
These studies can be subdivided into two categories: self-similar approaches and mesoscale ap-
proaches. In a self-similar approach the convective force and the spanwise turbulent flux gra-
dients are assumed to dominate the flow, allowing for standard wake-like solutions (Frandsen et 
al., 2004; Hegberg, 2004). In a mesoscale approach, on the other hand, the flow is assumed to 
be dominated by the Coriolis force and the vertical turbulent flux gradients, opening the door to 
either extra surface drag approaches (Hegberg, 2002) or more generic mesoscale approaches 
(Liu et al., 1983; Baidya Roy, 2004; Rooijmans, 2004). 
 
In section 3.3.1 of this report we will show that neither the self-similar wake approach nor the 
extra surface drag approach is valid because over the separation distance between wind farms 
the convective and the Coriolis forces are of equal order of magnitude. This implies that a wind 
farm wake may be deflected. Although this was already implicitly recognized in the more ge-
neric approaches, these studies lack realistic formulations for the turbulence and the wind tur-
bines. 
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3. Flow model 

3.1 Overview of the flow modeling approach 
We start in section 3.2 with the definition of the flow problem, and subsequently derive the go-
verning equations in section 3.3 and a numerical representation in section 3.4. Next, in section 
3.5 we address the continuity equation. We then turn our attention to the turbulence parameteri-
zation in section 3.6, and to the wind turbine parameterization in section 3.7. The boundary 
conditions and initial conditions are presented in section 3.8, and an estimate of the discretisa-
tion error in section 3.9. Finally, in section 3.10 we address the translation between grid-cell av-
eraged velocities and point velocities. 
 
 

3.2 Definition of the flow problem 
Consider the geostrophic wind, that is the theoretical wind that results from the balance between 
the pressure gradient force and the Coriolis force (figure 3.1a). This wind is directed parallel to 
lines of equal pressure, with low pressure on the left on the northern hemisphere. Turbulent drag 
slows down the wind and turns it to point towards low pressure. Near the surface the deviation 
from the geostrophic velocity and direction is largest. Next consider an observer who looks in 
the direction of the near-surface wind, and introduce the x-axis likewise (figure 3.1b). For this 
observer the wind points towards the high pressure, which means that in his coordinate system 
the surface wind has a negative spanwise component. This situation defines the flow problem: 
To determine the velocity components at a given height as observed when looking in the direc-
tion of the near surface wind, given a geostrophic wind and a surface roughness. If the passive 
observer is replaced by a wind turbine that exerts a force on the wind, the definition of the flow 
problem is complete (figure 3.1c). 
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Figure 3.1 Velocity decomposition. (a) Geostrophic wind G, wind u(z) at a height z above the 

surface and near-surface wind u(zns). (b) Streamwise axis x in the direction of the 
near-surface wind. (c) Streamwise component u(z) and spanwise component v(z) of 
the geostrophic wind 
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3.3 Governing equations 

3.3.1 Dimensional form 
The mean (in the sense of Reynolds averaged) flow in the neutral planetary boundary layer is 
incompressible and high-Reynolds number. In addition, as explained in section 3.2, it is turbu-
lent and affected by the rotation of the Earth. It is described by the momentum equations (Hol-
ton, 1992, section 5.1.2): 
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in combination with the continuity equation: 
 

0
z
w

y
v

x
u

=
∂
∂

+
∂
∂

+
∂
∂ ;                                                                                                      (4) 

 
and a set of boundary conditions. Here  
 

• u , v  and w  are the components of the mean velocity; 
• 'u , 'v  and 'w  are the velocity fluctuations; 
• ρ  is the air density; 
• p  is the mean pressure; 
• φf  is the Coriolis parameter; 

• xa , ya  and za  are the mean components of the flow acceleration due to the external 
body force in this case exerted by wind turbines; and 

• the covariances represent the turbulent momentum fluxes. 
 
The z-axis is in vertical direction and without loss of generality the x-axis is assumed to be in 
the direction of the surface wind. The equations 1, 2, 3 and 4 constitute a system of 4 equations 
with 4 unknowns, which can be solved once boundary conditions are set. We come back to the 
boundary conditions in section 3.8. 
 
In order to estimate the magnitude of the individual terms in the equations 1, 2, 3 and 4 we in-
troduce length and velocity scales (Holton, 1992, section 2.4) that correspond to wind farming 
in the planetary boundary layer (table 3.1). A length scale is a distance related to motions or ob-
jects in the planetary boundary layer and a velocity scale is the velocity variation over a given 
length scale. 
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Table 3.1 Scales in the planetary boundary layer with wind farming 
 

Scale  Value Magnitude 
z0 Surface roughness length  1 mm - 1 cm  
D Rotor diameter  100 m 
St Turbine separation 10 D 1 km 
Sf Wind farm size 10 St 10 km 
Lx Wind farm separation 10 Sf 100 km 
Ly Wind farm wake width 10 Sf 100 km 
Lz Planetary boundary layer height  1 km 
Ux x-Velocity variation  10 m/s 
Uy y-Velocity variation  10 m/s 
Uz Vertical velocity variation 0.1 Ux Lz/Lx 1 cm/s 
Δp Pressure variation  1 hPa 
ΔT Temporal variation  1 day 
u Velocity variation  1 m/s 
ρ Air density  1 kg/m3 
fø Coriolis parameter  10-4 1/s 

 
 
First we address the length scales (figure 3.2). The vertical length scales include those of the 
surface layer (proportional to the surface roughness length), the turbine layer (proportional to 
the turbine hub height and therefore to the rotor diameter) and the top layer (proportional to the 
planetary boundary layer height). Since we consider the interaction with wind farms in the pla-
netary boundary layer, the vertical length scale Lz of our flow problem is proportional to the 
height of the planetary boundary layer. The horizontal length scales include the length of the 
turbine near wake (proportional to the rotor diameter), the turbine far wake and the related tur-
bine separation (up to 10D), the horizontal scale of a wind farm (typically consisting of 10 
rows/columns), and the wind farm wake (up to 10 horizontal wind farm scales). Since we con-
sider motions in the planetary boundary layer due to wind farm wakes, our flow problem has 
two horizontal length scales: the x-wise length scale Lx which we define to be proportional to 
the streamwise separation between wind farms, and the y-wise length scale Ly proportional to 
the width of the wake of a wind farm. Now the vertical length scale Lz is smaller than the hori-
zontal length scales Lx and Ly, and the y-wise length scale Ly is of the same order of magnitude 
as (but smaller than) the x-wise length scale Lx. Table 3.1 gives the typical values. 
 
As to the velocity scales (figure 3.3), in our flow problem the y-wise velocity scale Uy is of the 
same order of (but smaller than) the x-wise velocity scale Ux. Since flow on planetary boundary 
layer scale is approximately horizontal (Uz is smaller than Ux and Uy), inflow in the xy-plane is 
mainly balanced by outflow in the xy-plane. In other words: the horizontal velocity scales Ux 
and Uy are of opposite sign. A scale analysis of the continuity equation (table 3.2) gives an up-
per bound for Uz: 
 

x

x

z
z U

L
LU << . 

 
In the following Uz is an order of magnitude smaller than this upper bound. Another velocity 
scale is the turbulence velocity scale u, which is of the order of 10% of a horizontal velocity 
scale. The typical values of the velocity scales are presented in table 3.1. The subsequent scale 
analysis of the momentum equations 1, 2 and 3 is presented in table 3.3. 
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Figure 3.2 Vertical (left) and horizontal (right) length scales 

 

 
 
Figure 3.3 Length and velocity scales in the planetary boundary layer with wind farming 
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Table 3.2 Scale analysis of the continuity equation 
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Table 3.3 Scale analysis of the momentum equation 
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By neglecting all but one of the small terms (see below) and by employing the definitions 
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of the components ug and vg of the geostrophic velocity, it follows that also in the case of wind 
farming the neutral planetary boundary layer equations are essentially steady and two-
dimensional: 
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Note that, anticipating on turbulence due to a wind farm, the spanwise gradients y/'v'u ∂∂  and 

y/'v'v ∂∂  have been retained although these are an order of magnitude smaller than the other 
terms in a boundary layer which does not contain a wind farm. 
 
In contrast to standard geostrophic flow, modeled by the momentum equations 
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in the equations 5 and 6 the convective force and the y-wise turbulent momentum flux gradients 
are significant, which rules out the extra surface drag approaches which are usually applied to 
solve these momentum equations. In addition, in contrast to general wake flow, modeled by the 
momentum equations 
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in the equations 5 and 6 the Coriolis force and the vertical turbulent momentum flux gradients 
are significant, ruling out self-similar wake approaches. 
 
In contrast to the original system the equations 5, 6 and 7 constitute an overdetermined system: 
3 equations with 2 unknowns. Since evidently the velocity must obey conservation of mass, the 
solution to the momentum equations must be corrected in such a way that the velocity satisfies 
continuity while remaining close to that solution. This is achieved by using the Lagrange mul-
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tiplier method (Ferziger and Perić, 1997, section 7.7), which essentially provides the third un-
known. 
 
Another scale analysis, the Rossby-number similarity approach (Garrat, 1994, section 3.2.1), 
shows that close to the surface the x-wise velocity component of geostrophic flow is much larg-
er than the y-wise velocity component. At first approximation the near-surface wind is therefore 
in the x-direction. For this reason in the following the x-direction is referred to as the stream-
wise direction, and the y-direction as the spanwise direction. Note this outcome collaborates the 
definition of the length scales Lx and Ly above. 
 
In order to close the momentum equations 5 and 6 we represent the turbulent momentum fluxes 
by a mean turbulent viscosity mk  in combination with gradients of the mean velocity compo-
nents: 
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−≈ .       (8) 

 
The approximations here originate from a scale analysis of the turbulent fluxes (table 3.4) em-
ploying the length and velocity scales introduced above (table 3.1). Note the equations are not 
closed completely because the mean turbulent viscosity remains; its parameterization is ad-
dressed in section 3.6. 
 
The external accelerations in the momentum equations 5 and 6 require another form of closure 
because these accelerations, due to the force exerted by the wind turbines, ultimately depend on 
the horizontal velocity. We treat this in section 3.7. 
 
By inserting the equations 8 for the turbulent momentum fluxes into the momentum equations 5 
and 6, and by applying the continuity equation 7, we obtain: 
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and 
 

0
y
v

x
u

=
∂
∂

+
∂
∂ .                                                                                                              (11) 

 
The momentum equations 9 and 10, together with the continuity equation 11 as the constraint, 
are the governing equations for neutral planetary boundary layer flow with wind farming. 
 
 



 

ECN-E--09-041  19 

Table 3.4 Scale analysis of the turbulent fluxes 
 

Turbulent fluxes 'v'u  'w'u  'v'v 'w'v  
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Scale 
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L
U

z

x

L
U

x

z

L
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y

y

L
U

 
z

y

L
U

 
y

z

L
U  

Magnitude [1/s] 10-4 10-4 10-2 10-7 10-4 10-2 10-7 

 
 

3.3.2 Non-dimensional form 
Next we introduce the horizontal length scale D (proportional to the wind turbine rotor diame-
ter), the vertical length scale z0 (proportional to the surface roughness length), and the velocity 
scale G (proportional to the geostrophic wind velocity), and define: 
 

• The components U and V of the non-dimensional mean velocity: 
UGu =  and VGv =  with 2

g
2
g

2 vuG += ; 
• The non-dimensional coordinates X, Y and S: 

XDx = , YDy =  and )Sexp(zz 0= , 
anticipating on a rectangular horizontal grid and a logarithmic vertical grid; 

• The non-dimensional mean turbulent viscosity Km: 

mm KGDk = , 
• The components Ax and Ay of the non-dimensional mean external acceleration: 

x

2

x A
D

Ga =   and  y

2

y A
D

Ga = . 

 
By inserting these definitions into the equations 9, 10 and 11 we obtain the non-dimensional 
form of the governing equations: 
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and 
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0
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∂                                                                                                                    (14) 

 

where  
G
Df

fp
φ=   and  

0

p z
)Sexp(D

D
−

=   are non-dimensional parameters. 

 
 

3.4 Momentum equations 

3.4.1 Discretization 
Anticipating on an explicit solution of the momentum equation in a given point we discretize 
the equations 12 and 13 in the grid point [i,j,k] with backward finite differences employing grid 
sizes ΔX, ΔY and ΔSk. (Recall the vertical coordinates are non-equidistant.) Doing so, the non-
linear terms cancel: 
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where the approximations originate from neglecting the truncation errors. Omitting the identifier 
[i,j] for ease of notation, in a given point [i,j,k] the resulting difference equations have the fol-
lowing form: 
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The system of equations 15 is the already announced explicit solution of the momentum equa-
tion in a given point. The coefficients A, B, C, D and E "only" depend on: 
 

• The grid sizes ΔX, ΔY and ΔSk of the numerical domain, 
• The turbulent viscosity in the point [i,j,k] and its spanwise and vertical gradients, 
• The components of the flow acceleration due to the external force, and 
• The velocity components in the backward points [i,j-1,k], [i-1,j,k], [i-1,j-1,k], [i,j-2,k]. 

 
Together this implies that if the turbulent viscosity is computed separately (see section 3.6), the 
external acceleration is known (see section 3.7) and the indicated backward velocities are avail-
able, the system of equations 15 allows for an implicit solution of U and V in a vertical at [i,j] 
once appropriate boundary conditions are set. 
 
At the bottom of the numerical domain (k = 1: z = z0) the boundary condition is no slip, so that, 
on omitting the identifier [i,j] for ease of notation, we get: 
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At the top (k = kmax: z = hgeo that is the height where the velocity reaches the geostrophic value) 
the velocity is geostrophic, so that: 
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where  G/uU gg =   and  G/vV gg =   are the non-dimensional components of the geostrophic 
velocity. 
 
 

3.4.2 Representation 
By employing for ease of notation the matrix-vector equivalent of the system of equations 15: 
 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]kEkUkAB1kUkC2kUkD =+−+− , 
 
the momentum system in the vertical at [i,j] is: 
 

cUM m = ;                                                                                                              (16) 

 
with the matrix of size  2(kmax-2) x 2(kmax-2): 
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and the vectors 
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The index m denotes that the velocities satisfy the momentum equation. 
 
 

3.4.3 Solution procedure 
Since the velocity depends on the turbulent viscosity, the solution procedure iterates between 
solving the relatively small matrix-vector system in equation 16 by Gaussian elimination and 
computing the turbulent viscosity profile. The procedure starts in the vertical at [i+1,j+2] so that 
initial velocity conditions are needed at the inlet plane i = 1 and the two planes at j = 1 and j = 2, 
and initial turbulent viscosity conditions at [i,j]. Once a vertical profile of U and V is computed 
in [i,j], the procedure proceeds with the profiles in [i,j+1], [i,j+2] etc. until jmax is reached. Next 
the planes at i+1, i+2 etc up to imax follow. The solution therefore marches in the two horizontal 
directions. 
 
 

3.4.4 Formal order of the numerical scheme 
In order to estimate the formal order of the numerical scheme we cast the momentum system in 
equation 15 into the matrix-vector form and consider the truncation error in its solutions U and 
V while isolating the various error sources. 
 
The matrix-vector representation of the momentum system is: 
 
 RUAB =                                                                                                                   (17) 
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where 
 Au etc indicate the elements of the momentum matrix, 
 A'u etc indicate the coefficients in the leading term of truncation errors, and 
 [ ] [ ] [ ] [ ] [ ]kE1kUkC2kUkDR uuuu +−+−=  and  
 [ ] [ ] [ ] [ ] [ ]kE1kVkC2kVkDR vvvv +−+−=  are the elements of the vector R . 
 
Now we consider the streamwise velocity U. By applying Cramer's rule to the system in equa-
tion 17, it follows that: 
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Recognizing the exact solution Du/D, we subsequently introduce the discretization error ΔU in 
the streamwise velocity: 
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In order to isolate the contribution by the truncation error in the vertical direction we set ΔX = 0 
and ΔY = 0. As a result we obtain: 
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By inserting these values into equation 18 it follows that the discretization error ΔU is propor-
tional to the square of the vertical grid size: 
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Next we consider two discretization errors: ΔU2 on the vertical grid ΔZ2 and ΔU1 on ΔZ1. Their 
ratio is given by: 
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By introducing the definition of the order pz of the vertical scheme and by inserting equation 19 
in this definition it can be shown that the formal order of the numerical scheme in vertical direc-
tion is: 
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In order to isolate the contribution to ΔU by the truncation error in spanwise direction we set 
ΔX = 0 and ΔZ = 0, with as a result: 
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By inserting these values into equation 18 it follows that: 
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where the two terms in ΔU are found to be of the same order of magnitude. The ratio between 
the discretization errors ΔU2 and ΔU1 on the spanwise grid sizes ΔY2 and ΔY1 is: 
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By using equation 20 it can be shown that the formal order py of the scheme in spanwise direc-
tion is: 
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By evaluating the value of the matrix elements and the vector elements in equation 17 it can be 
shown that 
 

 
2
m

4

2

2

k
v

x
z

y
u
Δ
Δ

∂
∂

∝
α
β , 

 
where ∂2u/∂y2 indicates the curvature of the streamwise velocity, v indicates the spanwise veloc-
ity and km indicates the turbulent viscosity. 

Subsequently the range of possible values of py is estimated by evaluating two limit situa-
tions: 1) near the bottom and 2) near the top of the numerical domain. Near the bottom of the 
numerical domain β/α is found to vanish because of the low values of the spanwise velocity in 
combination with the small vertical grid size, with as a consequence that py approaches 1 in that 
region. Near the top of the numerical domain β/(α ∂2u/∂y2) is found to approach –1 so that py 
approaches –0.5 there. 
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In order to isolate the contribution to ΔU by the truncation error in streamwise direction we set 
ΔY = 0 and ΔZ = 0. Proceeding in a similar way as for py it can be shown that the possible val-
ues of the order px of the numerical scheme in streamwise direction are –0.5 < px < 1 too. 
 
Finally we consider the spanwise velocity V. By proceeding in the same way as for U similar 
expressions are obtained for the order of the schemes in the vertical, the spanwise and the 
streamwise direction. 
 
 

3.4.5 Numerical stability 
To investigate the numerical stability of the momentum system in equation 15, we consider the 
matrix-vector representation of equation 17 while neglecting the truncation errors. 
 
In general an error in a matrix element will propagate into an error in the resolved vector. For 
example if the matrix element Au is disturbed by an error e, the propagation of this error is given 
by the growth vector: 
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where ε  is the vector with the errors in the resolved vector. Similar expressions can be derived 
for a disturbance of the other matrix elements. 
 
In order to prevent instability we require that the absolute value of the growth rate remains 
smaller than 1: 
 
 1g1 u +<<−    and   1g1 v +<<−  . 
 
At the bottom of the numerical domain, where errors grow from initial velocities 0u ≈  and 

0v ≈ , it can be shown this requirement is met if 
 

 ( ) ( )
( )0

2

m

gg

1b4
min zk

v,umaxf
c

z
y,xmin φ

Δ
ΔΔ

≥  ,                                                                      (21) 

 
where Δzmin indicates the spacing between the lower two points in vertical direction, cb1 indi-
cates a constant of proportionality and ( )0m zk  indicates the mean turbulent viscosity at the bot-
tom of the numerical domain. Equation 21 reveals that for the solution procedure to remain sta-
ble the horizontal grid sizes must be larger than a critical value which is proportional to the ver-
tical grid size and the value of the Coriolis parameter, and which is inversely proportional to the 
turbulent viscosity. With the exponential vertical grid expansion )Sexp(zz 0=  and the assump-
tion 
 

 ( ) ( )geo0

g0
0m h/zln

uz
zk −∝  

 
from equation 21 it follows that: 
 



26  ECN-E--09-041 

 ( )
( )( ) ( )gg
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h
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1Sexp
Y,Xmin φ

Δ
ΔΔ

≥
−

 . 

 
At the top of the numerical domain, on the other hand, errors grow from initial velocities guu ≈  

and gvv ≈  and the requirement on preventing error propagation is met if 
 

 ( ) ( )
( )geom

gg

1t2
max hk

v,umax
c

z
xy2,yx2min

≥
−−

Δ
ΔΔΔΔ  ,                                                     (22) 

 
where Δzmax indicates the spacing between the upper two points in vertical direction, ct1 indi-
cates a constant of proportionality and ( )geom hk is the mean turbulent viscosity at the top of the 
numerical domain. With the exponential vertical grid expansion and the assumption that 

( ) Ghchk geoNikgeom ∝ , from equation 22 it follows that: 

 

 
( )

( )( ) ( )gg
geo

Nik

t
2 V,Umax

D
h

c
c

Sexp1
XY2,YX2min

≥
−−

−−
Δ

ΔΔΔΔ
. 

 
As an illustration figure 3.4 shows the empirically determined minimal horizontal grid size for 
different combination of the geostrophic height and the surface roughness length in the case of a 
geostrophic wind speed of 14.1 m/s. 
 
 

3.4.6. Conservation of mass and energy 
The solution to the matrix-vector momentum system in equation 16 does not automatically sa-
tisfy the continuity and the energy equations. In this section we derive an optimal solution in the 
sense that it is mass and energy conserving, and at the same time remains close to the momen-
tum conserving solution. 
 
Conservation of mass requires (recall equation 14): 
 

0
Y
V

X
U

=
∂
∂

+
∂
∂  , 

 
which in the grid point [i,j,k] reduces to: 
 

  . [ ] [ ] [ ] [ ] 0
Y

k,1j,iVk,j,iV
X

k,j,1iUk,j,iU
=

−−
+

−−
ΔΔ

 .                                          (23) 

 
Equation 23 implies that given the preceding values U[i-1,j,k] and V[i,j-1,k], in [i,j,k] a mass 
conserving solution must satisfy: 
 
 [ ] [ ] 0Ck,j,iVBk,j,iUA =++                                                                          (24) 
with 

 
X
1A
Δ

= , 
Y
1B
Δ

= . and [ ] [ ]
Y

k,1j,iV
X

k,j,1iUC
ΔΔ
−

−
−

−= , 

 
which is a line in the UV-plane. 
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Figure 3.4 Minimal horizontal grid spacing for different combination of the geostrophic height 
and the surface roughness length 

 
 
Conservation of energy requires 
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ΔΔΔ    with   ( )22 VU
2
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It can be shown that in the grid point [i,j,k] an energy conserving solution must satisfy: 
 
 [ ] [ ] [ ] [ ] [ ] [ ] 0fk,j,iVek,j,iUdk,j,iVk,j,iUck,j,iVbk,j,iUa 22 =+++++  (25) 
 
with 
 

 2ba == ,    
x
y

y
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Δ
Δ

Δ
Δ

+= ,    [ ] [ ] [ ]1k,j,iUk,1j,iU
y
xk,1j,iVd −−−−−=

Δ
Δ ,  

 [ ] [ ] [ ]1k,j,iVk,j,1iV
x
yk,j,1iUe −−−−−=

Δ
Δ   and  [ ]k,j,iE

2
1f ρ−= ; 

 
which is a closed contour in the UV-plane. 
 
In general there are two solutions (Uma&en,Vma&en) which satisfy equation 24 and equation 25 si-
multaneously. The optimal solution is the vector (U,V) which is halfway between the solution 
(Umo,Vmo) of the momentum equation and the nearest value of (Uma&en,Vma&en). This is illustrated 
in figure 3.5. 
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Figure 3.5 Optimal solution of the flow problem 

 
 

3.5 Continuity equation revisited 

3.5.1 Lagrange multiplier method 
The optimal solution does not automatically satisfy the continuity equation. In order to derive a 
velocity that does satisfy continuity we apply the Lagrange multiplier method (Ferziger and 
Perić, section 7.7). This method basically provides the third unknown to the system of equations 
by applying a Poisson solver to the divergence of the velocity field, and subsequently computes 
the gradient of the so-determined third unknown. 
 
Now consider the components mu  and mv  of the velocity that satisfy the momentum equations. 
According to the Lagrange multiplier method the third unknown λ  is given by 
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zyx
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λ∂  ,                                                                              (26) 

 
with Neuman boundary conditions 
 

0
x
=

∂
λ∂  and 0

y
=

∂
λ∂  

 
at the faces of the computational domain because a correction to the velocity is not needed 
there. The gradient of the third unknown is equal to the velocity correction, so that  
 

x
uu mmc ∂

λ∂
−=+  and 

x
uu mmc ∂

λ∂
−=+  

 
are the components of the velocity that satisfy both momentum and continuity. 

conservation of energy 

optimal solution 
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momentum equation 

conservation of mass 
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3.5.2 Representation 
If Λ  is the non-dimensional third unknown, the non-dimensional form of the central finite dif-
ferences based numerical representation of equation 26 is 
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In the numerical domain these difference equations constitute the matrix-vector system 
 

RP =Λ ;                                                                                                                (27) 

 
where the matrix P  contains the operators, the vector Λ  contains the values of the third un-

known in the numerical domain, and the vector R  contains the values of the velocity diver-
gence in the field plus, if appropriate, the boundary conditions. 
 

The stencil of the matrix P  is given by: 
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with 
 



30  ECN-E--09-041 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

kdab
akdab

akdab
akd.b

b.kdab
bakdab

bakdab
bakd.b

b.kdab
bakdab

bakdab
bakd.b

b.kda
bakda

bakda
bakd

k
G

OOOO

OOOO

OOOO

OOOOO

OOOOO

OOOOO

OOOOO

OOOOO

OOOOO

OOOO

OOOO

OOOO

 
and 

IcH kk
=  . 

 
It is clear that P  is sparse and has 7 bands. Unlike a standard Poisson matrix, the bands –3 and 
+3 as well as the band 0 (the diagonal) have a structure because of the non-equidistant vertical 
grid. In addition, P  is not diagonally dominant because of the logarithmic vertical grid in com-
bination with the Neumann boundary condition at the bottom of the numerical domain. 

3.5.3 Solution procedure 
The matrix-vector system in equation 27 is solved iteratively: 
 

( )[ ] ( ) RDPDI 1
P

)1i(1
P

)i( −−− Δ++ΛΔ+−=Λ  , 

 
which only involves cheap row operations because of the structure of P . In this scheme 

P
D  is 

the diagonal matrix of P , and 
P

Δ  is the defect matrix which without loss of generality is cho-
sen to be equal to 

P
Df , where f is a positive factor. The function of the defect matrix is to alle-

viate the not-diagonally dominant character of P , and by doing so to improve the convergence 
rate of the iterations. The stopping criterion is: 
 

ε≤
−Λ

2

2

)I(

R

RP
 , 

 
where ε  is a threshold. 
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3.6 Turbulence parameterization 
The mean turbulent viscosity in the momentum equations 9 and 10 is parameterized by using a 
modified version of the algebraic Baldwin-Lomax model, where the modification consists of a 
new formulation of the mixing length in combination with parameters which are calibrated such 
that realistic values of the turbulence intensity occur. 
 
The mean turbulent viscosity mk  is [Willcox, section 3.4.2]: 
 

[ ]o,mi,mm k,kmink = , 
 
where i,mk  and o,mk  are the inner and outer layer turbulent viscosity, respectively. 
 
The inner layer turbulent viscosity depends on the mixing length mixλ  and the mean vorticity ω : 
 

ωλ= 2
mixi,mk .                                                                                                                   (28) 

 
The mixing length in equation 28 is given by 
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Here Ccal is a calibration parameter, Ax is the Dutton-Panofsky parameter (see below), A0 is the 
Van Driest coefficient rescaled to the surface roughness length z0; ν is the kinematic viscosity 
and u* is the friction velocity. Note that the modified model uses the surface roughness length as 
the minimal value of the mixing length and the Van Driest function in order to limit the growth 
of the mixing length, and limits the mixing length to the fraction CNik of the geostrophic height 
in agreement with observations of Nikuradse (Nikuradse, 1932; cited in Schlichting, 1979, sec-
tion XX.c). 
 
The vorticity in equation 28 is given by 
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The outer layer turbulent viscosity o,mk  depends on the wake turbulent viscosity w,mk  and em-
ploys the Klebanoff function so that the turbulent viscosity decreases with distance from the sur-
face in the outer layer: 
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Table 3.5 Coefficients in the modified Baldwin-Lomax model 
 

κ  α  CC  1KC  2KC  WC  +
0A  NikC  

0.41 0.0168 ακ /  0.3 5.5 1.0 26 0.14 
 
 

Table 3.6 Dutton-Panofsky parameter according to Dyrbye and Hansen 
 

0z  xA  
0.05 2.5 
0.3 1.8 

 
 
The wake turbulent viscosity is the smaller of two viscosities that are defined on basis of a tur-
bulent mixing velocity mixυ , the distance mixh  above the surface where the turbulent mixing ve-
locity is largest, and the velocity hmixU  at mixh : 
 

[ ]2w,m1w,mw,m k,kmink =   with  max,mixmix1w,m hk υ=   and  
max,mix

2
hmixf

mixW2w,m hCk
υ
U

= , 

where 

[ ]mixzmix υυ maxmax, =   with  
κ
ωλ

=υ mix
mix   and  ( ) ( )mix

2

mix

22
hmix hvhu +≡U . 

 
Note that at the surface the turbulent viscosity has a small but non-zero value in agreement with 
the concept of a hydraulic rough wall. At the top of the numerical domain, where the velocity 
reaches the geostrophic value, turbulent viscosity is non-zero in agreement with observations by 
Nikuradse. 
 
The standard value 2.4 of the Dutton-Panofsky parameter Ax was found to give too small a val-
ue of the turbulence intensity and for that reason also of the turbulent viscosity. For this reason 
Ax is interpolated/extrapolated to the surface roughness length by using the values reported in 
the literature (Dyrbye and Hansen, 1997). 
 
The modified Baldwin-Lomax algebraic parameterization is preferred over one or two-equation 
parameterizations (like the kε or the kω model) because, apart from being simple to implement, 
it is a turbulent boundary layer parameterization containing the elementary physics (mean vor-
ticity as the primary source of turbulent viscosity so that it varies with vertical as well as 
streamwise and spanwise velocity gradients). 
 
 

3.7 Wind turbine parameterization 
The external acceleration in the momentum equation is due to the force exerted on the flow by a 
cluster of wind turbines. Apart from the sign this force is equal to the sum of the thrust on the 
individual rotors. The rotor thrust of a single wind turbine essentially depends on the velocity 
induced by the rotor of that wind turbine, which in turn is related to the power production and 
thus to the horizontal velocity at hub height. Evidently the external acceleration is only present 
in a grid point where wind turbine are located or the grid points where turbines are interpolated; 
it is zero in any other grid point. 
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The external acceleration due to a single wind turbine is determined as follows. First, the vertic-
al profile of the velocity components U and V is computed with the external acceleration set to 
zero, yielding the "undisturbed" horizontal velocity hubU at hub height and the corresponding di-
rection hubϕ : 
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hub hv
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Then, by using the power curve ( )UP of the wind turbine, via the implicit relation between the 
power coefficient and the induction factor, the induction factor a  is computed: 
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The induction factor due to the single wind turbine is subsequently employed to determine the 
streamwise component Ax and the spanwise component Ay of the flow acceleration due to the 
wind turbine: 
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Note that alternatively the flow acceleration per unit volume can be computed directly if the 
thrust curve of the wind turbine is available. 
 
The external acceleration due to a cluster of wind turbines subsequently is determined by mul-
tiplying the single turbine value with the number of turbines Nt. In the grid point [i,j,k] the flow 
acceleration is 
 
 [ ] [ ] [ ] ANkwj,iwk,j,iA tVH= , 
 
where wH is the fraction of ΔxΔy covered by the horizontal area with wind turbines, wV is the 
fraction of ΔyΔz[k] covered by the rotor swept area, and Δx, Δy and Δz[k] are the sizes of the 
grid cell. 
 
 

3.8 Initial and boundary conditions 

3.8.1 Boundary conditions 
Mean velocity boundary conditions have already been introduced in section 3.3.1: zero at the 
bottom of the numerical domain (corresponding to z0) and geostrophic at its top (corresponding 
to hgeo). The boundary conditions for the mean turbulent viscosity are included in its parameteri-
zation (see section 3.6): vanishing but non-zero at both the bottom and the top of the numerical 
domain. 
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Figure 3.6 Initial profiles of streamwise velocity u, spanwise velocity v and turbulent viscosity 

km as made non-dimensional with the geostrophic velocity G, the geostrophic height 
hgeo and the rotor diameter D; geostrophic height of 500 m and surface roughness 
length 0.1 mm 

 

3.8.2 Initial conditions 
Velocity initial conditions are needed in the inlet plane i = 1 and in the planes j = 1 and j = 2. 
These are inspired by the Rossby-number similar planetary boundary layer velocity profiles 
[Garrat, 1994, section 3.2.1], and comprise a logarithmic profile for the non-dimensional 
streamwise velocity 
 

( ) ( )
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h/zln
h/zln

1zU g
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⎟
⎟
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⎜
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⎛
−=                                                                                         (29) 

 
and a linear profile for the non-dimensional spanwise velocity: 
 

( )
G
v

zh
zzzV g

0geo

0

−
−

= ,                                                                                                    (30) 

 
where z is the distance from the surface. 
 
The initial profile for the mean turbulent viscosity, also needed in the vertical at [i, j], is ob-
tained by applying the Baldwin-Lomax model to the profiles according to the equations 29 and 
30. 
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As an example figure 3.6 shows the initial profiles for a geostrophic height of 500 m and a sur-
face roughness length of 0.1 mm. 

3.9 Estimate of discretization error 
In this section we give estimates of the discretization error in the numerical solution by using 
the Richardson method [Ferziger and Perić, 1997, section 3.10]. First the procedure is intro-
duced and next the estimates are given. 
 
The discretization error εh is the difference between the exact solution Φ and the numerical solu-
tion φh, and generally is expressed as the sum of the first and the higher order terms in the Tay-
lor expansion of the exact solution: 
 
 .t.o.hhp

hh +=−≡ αϕΦε                                                                                      (31) 
 
Here α is a constant (in the sense that it does not depend on the grid spacing), h is the grid spac-
ing and p is the leading order of the discretization error. 
 
The order p and the constant α can be estimated if a numerical solution is available on three 
grids with different spacing h, mh and nh: 
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(Note the often quoted explicit relation p = ln((φh-φmh)/(φh-φnh))/ln(m/n) only is valid if mp >> 1 
and np >> 1.) By inserting these estimates into equation 31 it follows that estimates for the dis-
cretization error on the finer grid and the corresponding relative discretization error are: 
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Table 3.7 shows the observed order and error for the implicit scheme that is used in the vertical 
direction. Data from two different finest grids are presented (209 and 417 points), both with the 
same grid ratios (m = 2.0035 and n = 4.0344). The calculations were performed with a boundary 
layer which has a geostrophic velocity of 14.1 m/s, a geostrophic height of 200 m and a surface 
roughness length of 1 mm; the domain is 200 x 200 km2. Recalling the estimated formal order pz 
= 2 (section 3.4.4), the data in table 3.7 show that the observed order is smaller than the formal 
order. The data also show that acceptable values of the relative discretization error require a 
relative large number of grid points in vertical direction. 

Table 3.8 shows the observed order and error for the explicit scheme that is used in the hori-
zontal directions, on basis of a finest grid with 57 points in streamwise and spanwise direction 
and with grid ratios m = 2 and n = 4. Now recall the range of possible values of the estimated 
formal order is  -0.5 < px,y < 1 (section 3.4.4). Near the top and near the bottom the observed or-
der is found to be in agreement with the formal order in the sense that it has a negative value, 
but close to the bottom the observed order does not correspond to the formal order. Note that a 
relative small number of grid points are sufficient to get small values of the relative discretiza-
tion error. 
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Table 3.7 Order p and error ε of the scheme in vertical direction at three vertical positions 
(near the top, near the bottom and close to the bottom). Subscripts indicate 
streamwise resp. spanwise velocity 

 
 Nz = 209 Nz = 417 

z/hgeo pu εu pv εv pu εu pv εv 
 [-] [-] [-] [-] [-] [-] [-] [-] 

0.625 1.5 0.023 1.7 0.029 1.3 0.012 1.3 0.017
0.153 1.3 0.053 1.5 0.076 1.2 0.027 1.2 0.044
8 10-6 0.9 0.161 2.8 0.025 1.0 0.060 1.1 0.035

Table 3.8 Order p and error ε of the scheme in horizontal direction at three vertical positions 
(near the top, near the bottom and close to the bottom). Subscripts indicate 
streamwise resp. spanwise velocity 

 
 Nx = 57, Ny = 57 

z/hgeo pu εu pv εv 
 [-] [-] [-] [-] 

0.625 -1.0 -0.001 -1.0 -0.027
0.153 -1.0 -0.002 -1.0 -0.043
8 10-6 -2.6 -0.001 -0.5 -0.065

 
 

3.10 Translation from grid-cell averaged velocity to point velocity 
Because of the discretization a solution to the matrix-vector system provides the grid-cell aver-
aged value of the velocity vector, which value in the wake of the wind farm can not automati-
cally be compared to the point value of the velocity vector. In this section we derive a transla-
tion between the grid-cell averaged velocity and the point velocity downstream of a wind farm, 
and two measures of the impact of a wind farm on the point velocity. 
 
Inspired by the literature (e.g. Barthelmie et al, 2003; Elliot, 1991; Milborrow, 1980), we intro-
duce a point velocity wake model which has a power law decay in streamwise direction dx and a 
Gaussian decay in spanwise direction dy (see figure 3.7 for an explanation): 
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Here m is the exponent of the streamwise velocity deficit decay, ΔUini is the initial velocity defi-
cit, d = 2D is the streamwise scale of the velocity deficit decay, b1 is the decay rate of the wake 
width, and b0 is the initial wake width. 
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Figure 3.7 Horizontal lay-out of the grid cells in relation to the horizontal area covered by the 

wind farm, and definition sketch of downstream distance dx, spanwise distance dy, 
streamwise wind farm length scale Lx and spanwise wind farm length scale Ly. Also 
indicated are the points where measured velocity is evaluated in the validation study 

 
The grid-cell averaged streamwise velocity UIII in the first grid cell behind the wind farm is ob-
tained by integrating the point velocities over the horizontal domain: 
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where x1 = Δx – Lx/2, x2 = 2Δx – Lx/2, y1 = 0 and y2 = Δy. Here Δx and Δy indicate the horizon-
tal sizes of the grid cell, and Lx indicates the streamwise length of the wind farm. It can be 
shown that 
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where  0212 bxbs += , 0111 bxbs +=   and  222 s/yt =  . 
 
In a similar way the grid-cell averaged streamwise velocity UIV in the second grid cell behind 
the wind farm is obtained: 
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where x3 = 3Δx – xF/2,  0313 bxbs +=   and  323 s/yt = . 
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Figure 3.8 Illustration of the concepts of initial velocity deficit and streamwise velocity 

recovery distance 

 
The equations 33 and 34 constitute a system of two equations with the two unknowns m and 
ΔUini. The exponent m is resolved from the rewritten system: 
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and subsequently the initial velocity deficit ΔUini is obtained from: 
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The exponent m of the streamwise velocity deficit decay and the initial velocity deficit ΔUini in 
combination with the point velocity model in equation 32 conveniently allow one to define two 
measures of the impact of the wind farm on the velocity: the velocity recovery distance (see fig-
ure 3.8) and the minimum save distance. 
 
The velocity recovery distance dVR is defined as the distance where the velocity deficit has de-
cayed to 1% of the upstream velocity: 
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The minimum save distance dMS is defined as the distance where the velocity deficit has de-
cayed to 0.5 m/s: 
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4. Validation 

In this chapter we address validation of the planetary boundary layer method that is described in 
chapter 3. Validation data consists of 10-minute averaged point velocities measured at or near 
hub height at met masts located upstream and downstream of the Horns Rev wind farm and the 
Nysted wind farm1. In both cases we compare the resolved point velocities obtained from the 
calculated grid-cell averaged values by using the method introduced in section 3.10. 
 
The Horns Rev wind farm consists of 80 wind turbines with a hub height of 70 m, a rotor di-
ameter of 80 m and a nominal power of 2 MW. It covers an area of approximately 20 km2, and 
has wind turbine rows directed 90-270 deg (from West to East). The Nysted wind farm, on the 
other hand, consists of 72 wind turbines with a hub height of 69 m and a rotor diameter of 84 m. 
These turbines can operate at two modes, reaching the full nominal power of 2.3 MW at one 
mode but a lower nominal power of 0.4 MW at the other. Nysted covers an area of approxi-
mately 23 km2, and has rows directed 98-278 deg. 
 
Figure 4.1 shows the velocity W relative to the upstream velocity Wups as a function of the 
downstream distance dx from the Horns Rev wind farm for upstream velocities of 6 m/s, 8 m/s 
and 10 m/s in combination with wind directions near 270 deg. In the calculations the surface 
roughness length is 0.1 mm, the geostrophic height is 500 m, and the geostrophic velocity is set 
such that the correct velocity at hub height is obtained. The number of grid points in vertical di-
rection is 100. The calculated velocities are average values in grid cells with a horizontal area of 
3.92 x 3.92 km2 and the centre at a spanwise distance of 1.96 km at a height of 66 m. Also indi-
cated are the resolved point velocities as obtained by using an initial wake width b0 = Lx/3 
(where Lx indicates the spanwise length of the wind farm) and a wake-width decay rate b1 = 
1/35. The measured velocities, which are not shown because of confidentiality reasons, on the 
other hand, are point values at a spanwise distance zero and at downstream distances of 2 km 
and 6 km at a height of 70 m. Upstream turbulent intensities have the same order of magnitude 
in the calculations and in the measurements (10% resp. between 7% and 8%). 

The figure 4.1 shows that the calculated relative velocity deficit (Wups-W)/Wups is smaller 
than the resolved one and by doing so illustrates the different character of these velocity deficits. 
These are larger than the calculated velocity deficits and in fact come within 5% of the resolved 
velocity deficits. Note that both the calculated as the measured relative velocity deficits are 
found to increase with increasing upstream velocity for the cases with 6 m/s and 8 m/s. 

Calculations with higher values of the surface roughness length and/or the geostrophic height 
did not give significantly different results. 
 

                                                 
1  Measured data by courtesy of L.E. Jensen of Dong Energy A/S as prepared by K.S. Hansen in the framework of 
the European UPWIND research project under contract with the European Commission (CE Contract Number 
019945 (SES6)) 
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Figure 4.1 Velocity W relative to the upstream velocity Wups as a function of distance dx 

downstream the Horns Rev wind farm. The upstream velocity is 6 m/s (top), 8 m/s 
(centre) and 10 m/s (bottom). Horizontal error bars indicate the streamwise size of 
the grid cell. Displayed are the grid-cell averaged velocity and the resolved point 
velocity 

In order to explore the velocity wake of the Horns Rev wind farm, table 4.1 presents the expo-
nent m of the streamwise velocity deficit decay and the initial velocity deficit ΔUini relative to 
the upstream velocity U0 as derived from the calculations by using the method introduced in 
section 3.10. These values are found to come close to the measured values (which are not 
shown): within 6% for the exponent and within 17% for the initial velocity deficit2. 

                                                 
2  Note that from theoretical considerations "possible" values of the exponent of the wake expansion law can be iden-
tified (Tennekes and Lumley, 1972, table 4.1). According to these the actual value of the exponent depends on the 
type of wake, distinguishing between the wake behind a propelled or a not-propelled body on the one hand and be-
tween an axisymmetric or a plane wake on the other hand: 
 

 axi-symm plane 
not-propelled body -2/3 -1/2 
propelled body -4/5 -3/4 

 
This suggests that, depending on the collective loading of the turbines and the asymmetry of the wake, values in the 
range between -0.5 and -0.8 are possible. Also note measurements behind a single wind turbine indicate an exponent 
of -1.04±0.07 (e.g. Barthelmie et al. 2003) 
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Figure 4.2 Velocity W relative to the upstream velocity Wups as a function of distance dx 

downstream the Nysted wind farm. The upstream velocity is 8 m/s (top) and 10 m/s 
(bottom). Horizontal error bars indicate the streamwise size of the grid cell. 
Displayed are the grid-cell averaged velocity and the resolved point velocity 

Table 4.1 Point values of the exponent m of the streamwise velocity deficit decay and the 
initial velocity deficit ΔUini as resolved from the calculated velocities 

 
 m [-] ΔUini/U0 [-]
 resolved resolved 

Horns Rev   6 m/s -0.629 0.825 
 8 m/s -0.488 0.726 

 10 m/s -0.503 0.740 
Nysted         8 m/s -0.477 0.476 

 10 m/s -0.640 0.557 
 

Table 4.2 Velocity recovery distance dVR and the minimum save distance dMS, as calculated 
from the data in table 4.1 

 
 dVR [km] dMS [km]

Horns Rev   6 m/s   178   6.1 
 8 m/s 1047 24.4 

 10 m/s   832 33.9 
Nysted         8 m/s   554   6.5 

 10 m/s   90   5.1 
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Figure 4.2 shows the same information for the Nysted wind farm for upstream velocities of 8 
m/s and 10 m/s in combination with wind directions near 278 deg. Apart form the wind turbine 
and the wind farm data the input to the calculations is the same as for the Horns Rev case. The 
velocities are measured at downstream distances of 2 km and 5 km at a height of 69 m. Meas-
ured upstream turbulent intensity is between 7% and 9%. 

The data in figure 4.2 reveal much the same information as in figure 4.1 but with one excep-
tion: the relative velocity deficits are found to decrease with increasing upstream velocity for 
the cases with 6 m/s and 8 m/s. 
 
Another look at the impact of the wind farms on the velocity is offered by the velocity recovery 
distance dVR and the minimum save distance dMS, see table 4.2. It is found that dVR is of the or-
der of 100...1000 kilometers, whereas dMS is of the order of 10 kilometers. 
 
In conclusion, resolved relative velocity deficits (point values which originate from the calcu-
lated grid cell averaged velocity deficits) have been found to come close to the relative velocity 
deficits that have been measured in the wake of the Horns Rev and the Nysted wind farms. The 
same holds for the corresponding impact measures (velocity recovery distance and minimum 
save distance). 
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5. Predictions 

5.1 Overview of predictions 
In this chapter we address predictions, which are outcome of calculations which can not be 
compared to measured data. First, in section 5.2 resolved velocity profiles are presented for the 
empty set, a single wind turbine, and a wind farm. Next, in section 5.3 the impact of wind farm 
design parameters and meteorological design parameters on the wind is presented. 

5.2 Resolved velocity profiles 

5.2.1 Empty set 
Resolved velocity profiles for the empty set comprise a domain without wind turbines or wind 
farms. Figure 5.1 shows four vertical profiles, each in a corner of a 200 x 200 km2 domain as 
valid for a geostrophic height of 500 m and a surface roughness length of 0.1 mm. (The corners 
are conveniently labeled NorthWest, NorthEast, SouthEast and SouthWest, where the mean 
flow is directed to the East.) The number of grid points in vertical direction is 25. The figures 
display the streamwise velocity versus height, the spanwise velocity, the angle between the 
streamwise and the spanwise velocity, and a hodograph of the two velocity components. The 
data in the figure is in qualitative agreement with the observed height dependence of undis-
turbed wind, where most of the velocity change occurs in the lower part and most of the direc-
tion change occurs in the upper part of the boundary layer, but it is too early to decide on the 
quantitative agreement. 

The figures 5.2 and 5.3 display a much thicker boundary layer (1500 m) with the same sur-
face roughness, and the same boundary layer thickness in combination with a much rougher sur-
face (1 cm). The figures show that the thinner the boundary layer or the larger the surface 
roughness, the larger the twist in the velocity profile. Again there is a qualitative agreement with 
observations which is to be collaborated with quantitative data. 
 
 

5.2.2 Wind turbine 
The modification of the wind profile due to a hypothetical wind turbine is studied for a turbine 
with a nominal power of 5 MW operating at full load, and having a rotor diameter of 100 m and 
a hub height of 70 m. Figure 5.4 shows that the relative initial velocity deficit is of the order of 
5% and that the velocity twist is increased with 1…2 deg. The velocity recovery distance drec is 
of the order of 100 rotor diameters. 
 
 

5.2.3 Wind farm 
The hypothetical wind farm consists of 22 turbines with a rotor diameter of 100 m, a hub height 
of 70 m and a nominal power of 5 MW. The turbine separation distance is 1 km (10 rotor di-
ameters) so that the nominal power density is 5 MW/km2. It operates in a boundary layer with a 
geostrophic height of 500 m and a surface roughness length of 0.1 mm; the hub-height velocity 
corresponds to about 64% of the geostrophic velocity. Figure 5.5 shows that if the wind farm 
operates at full load the initial velocity deficit is of the order of 15% and that the velocity twist 
is increased with 2…3 deg. The velocity recovery distance is at least 2 streamwise wind farm 
length scales Lx. 
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Figure 5.1 Vertical profiles of streamwise velocity u and spanwise velocity v in the four corners 

NorthWest, NorthEast, SouthEast and SouthWest of the numerical domain as made 
non-dimensional with the geostrophic velocity G and the geostrophic height hgeo; 
valid for a geostrophic height of 500 m and a surface roughness length of 0.1 mm 
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Figure 5.2 Like figure 5.1 but for a geostrophic height of 1500 m 
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Figure 5.3 Like figure 5.1 but for  a surface roughness length of 1 cm 
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Figure 5.4 Vertical profiles of streamwise velocity u and spanwise velocity v for different 

distances dx behind a wind turbine as made non-dimensional with the geostrophic 
velocity G and the geostrophic height hgeo; valid for a geostrophic height of 500 m 
and a surface roughness length of 0.1 mm 

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.0 0.2 0.4 0.6 0.8 1.0

u / G  [-]

z 
/ h

ge
o 

 [-
]

dx = -2 km
dx = 0 km
dx = 2 km
dx = 4 km

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

v / G  [-]

z 
/ h

ge
o 

 [-
]

 

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-15.0 -10.0 -5.0 0.0 5.0

atan( v / u )  [deg]

z 
/ h

ge
o 

 [-
]

-0.3

-0.2

-0.1

0.0

0.1

0.0 0.2 0.4 0.6 0.8 1.0

u / G  [-]

v 
/ G

  [
-]

 
 
Figure 5.5 Like figure 5.4 but for a wind farm 
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Figure 5.6 Impact of nominal power density Pnom/Afarm for a wind farm operating in a 

geostrophic velocity of 14 m/s on (a) the velocity recovery distance drec, (b) the 
minimum save distance dsav and (c) the initial downstream velocity Wini. Velocities 
are relative to the upstream velocity Wups and whereas distances are relative to the 
streamwise wind farm length scale Lx. The geostrophic height is 500 m and the 
surface roughness length is 0.1 mm 
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Figure 5.7 Impact of geostrophic velocity G on a wind farm with a nominal power density of 5 

MW/km2 on (a) the velocity recovery distance drec, (b) the minimum save distance 
dsav and (c) the initial downstream velocity Wini. Velocities are relative to the 
upstream velocity Wups and whereas distances are relative to the streamwise wind 
farm length scale Lx. The geostrophic height is 500 m and the surface roughness 
length is 0.1 mm 
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5.3 Impact of wind farm design parameters and meteorological parame-
ters 

Wind farm design parameters include separation distance from and layout (spacing, nominal 
power density) of the wind farm, and hub height and rotor diameter of the wind turbine. The 
impact of nominal power density is studied by changing the turbine separation distance in the 
hypothetical wind farm between 5 and 14 times the rotor diameter and keeping the geostrophic 
velocity at a constant value such that the upstream hub-height velocity is halfway cut-in and 
nominal. Figure 5.6 shows that both the relative velocity recovery distance drec/Lx and the rela-
tive minimum save distance dsav/Lx increase with the nominal power density, and that also the 
relative initial velocity deficit (Wups-Wini)/Wups increases with the nominal power density from 
6% (turbine separation 14 rotor diameters) to 100% (5 rotor diameters). 
 
Meteorological parameters include geostrophic velocity, geostrophic height and surface rough-
ness length. Figure 5.7 shows the impact of the geostrophic velocity for the hypothetical wind 
farm for hub height velocities near cut-in, halfway cut-in and nominal, near nominal, halfway 
between nominal and cut-out, and beyond cut-out. The relative velocity recovery distance is 
found to decrease with the geostrophic velocity, from a value of 20 at low geostrophic velocities 
to a limit value near 0 at high geostrophic velocities. The relative minimum save distance is 
found to have a maximum of the order of the streamwise wind farm length scale Lx, which is 
reached at geostrophic velocities between 15 m/s and 25 m/s. The relative initial velocity deficit 
(Wups-Wini)/Wups is found to decrease with increasing geostrophic velocity, and the largest abso-
lute initial velocity deficits Wups-Wini (of in this case 6.3 m/s) occur when the hub-height veloc-
ity is near nominal. 
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6. Summary 

In this report a new method has been presented for determining the interaction between a wind 
farm and the prevailing wind for wind energy siting studies. In addition first insights have been 
presented on the modification of the wind field due to a wind farm. 

A code called MFwWF (Mesoscale Flow with Wind Farming) has been developed in order to 
calculate the effect of one wind farm on another wind farm while taking the entire planetary 
boundary layer into account. The code has been validated by using measured data from large 
offshore wind farms, and is available for application to other wind farms. 

In chapter 3 it is shown that a neutral planetary boundary layer flow which interacts with wind 
farms essentially is steady and two-dimensional; and that the convective forces, the Coriolis 
forces and the vertical and spanwise gradients of the turbulent momentum fluxes all have the 
same order of magnitude. A numerical representation in the form of backward finite differences 
allows for an implicit solution of the two horizontal velocity components in vertical direction, 
iterating on the turbulent viscosity, in combination with a marching solution and a mass/energy 
conserving scheme in the horizontal directions. The continuity equation is satisfied by employ-
ing the Lagrange multiplier method to the velocity components that satisfy the continuity equa-
tion. 

In chapter 4 the new method is validated by using measured wind speeds downstream of the 
Horns Rev wind farm and the Nysted wind farm. Resolved relative velocity deficits (point val-
ues which originate from the calculated grid cell averaged velocity deficits) come within 5% of 
the relative velocity deficits that have been measured. 

In chapter 5 resolved profiles are presented which show how most of the wind speed change oc-
curs in the lower part of the boundary layer and how most of the wind direction change occurs 
in the upper part. These profiles reveal that the thinner the boundary layer or the larger the sur-
face roughness, the larger the wind direction change. Near a wind turbine with a rotor diameter 
of 100 m operating at a full load of 5 MW the velocity deficit is of the order of 5% of the up-
stream value, the wind direction change is increased with 1...2 deg, and the velocity recovery 
distance is of the order of 100 rotor diameters. For a wind farm with 22 of these turbines these 
numbers are 15%, 2...3 deg, and 2 wind farm length scales. 

In addition in chapter 5 initial velocity deficits and velocity recovery distances are presented 
that show the impact of nominal power density and geostrophic velocity for a wind farm which 
consists of 22 wind turbines with a nominal power of 5 MW. The initial velocity deficit relative 
to the upstream velocity decreases with increasing geostrophic velocity in general, and ranges 
from 6% (at a turbine separation of 14 rotor diameters) to 100% (at a separation of 5 rotor di-
ameters) if the velocity at hub height is halfway cut-in and nominal.) Both the relative velocity 
recovery distance and the relative minimum save distance increase with the nominal power den-
sity, and the relative initial velocity deficit increases with the nominal power density from 6% 
(at a turbine separation 14 rotor diameters) to 100% (at a turbine separation of 5 rotor diame-
ters). The relative velocity recovery distance decreases with the geostrophic velocity, from a 
value of 20 at low geostrophic velocities to a limit value near 0 at high geostrophic velocities, 
and the relative minimum save distance reaches a maximum value of the order of the stream-
wise wind farm length scale (which maximum is reached at geostrophic velocities between 15 
m/s and 25 m/s). Finally, the relative initial velocity deficit decreases with increasing geostro-
phic velocity, and the largest absolute initial velocity deficits (of in this case 6.3 m/s) occur 
when the hub-height velocity is near nominal. 
 
 



50  ECN-E--09-041 

 



 

ECN-E--09-041  51 

References 

S. Baidya Roy et al., 2004, Can large wind farms affect local meteorology? J. Geoph. Research, 
Vol. 109, D19101 
 
R. Barthelmie et al., 2003, Efficient Development of Offshore Windfarms (ENDOW), Report 
Risø-R-1407(EN) 
 
M.B. Christiansen and C.B. Hasager, 2005, Wake studies around a large offshore wind farm 
using satellite and airborne SAR, In: 31st Int. Symp on Remote Sensing of Environment, St 
Petersburg, Russian Federation 
 
C. Dyrbye and S.O. Hansen, 1997, Wind Loads on structures, John Wiley and Sons 
 
D.L. Elliott, 1991, Status of wake and array loss research, In: Proc. Windpower91, Palm 
Springs, California, 24-27 September 1991 
 
J.H. Ferziger and M. Perić, 1997, Computational methods for fluid dynamics (2nd ed.), Springer 
 
S. Frandsen et al., 2004, The necessary distance between large wind farms offshore - Study, 
Risø National Laboratory, Report Risø-R-1518(EN) 
 
J.R. Garratt, 1994, The atmospheric boundary layer, Cambridge University Press 
 
T. Hegberg and P.J. Eecen, 2002, The effect of large wind farms on the atmospheric boundary 
layer, In: Proc. Global Wind Power Conference 2002, Paris, France 
 
T. Hegberg, G.P. Corten and P.J. Eecen, 2004, Turbine interaction in large offshore wind farms 
- Atmospheric boundary layer above a wind farm, Report ECN-C--04-033 
 
J.R. Holton, 1992, An Introduction to dynamic meteorology (3rd ed.,) Academic Press 
 
M-K Liu et al., 1983, Mathematical model for the analysis of wind-turbine wakes, J. Energy, 
Vol. 7, No. 1, pp. 73-78 
 
D.J. Milborrow, 1980, The performance of arrays of wind turbines, J. Industrial Aerodynamics, 
5 (1980), pp. 403-430 
 
J. Nikuradse, 1932, Gesetzmässigheit der turbulenten Strömung in glatten Rohren, Forschg. 
Arb. Ing.-Wes No 356 
 
P. Rooijmans, 2004, Impact of a large-scale offshore wind farm on meteorology - Numerical 
simulations with a mesoscale circulation model, Universiteit Utrecht, Masters thesis 
 
H. Schlichting, 1979, Boundary layer theory (7th ed.), McGraw-Hill Book Company 
 
H. Tennekes and J.L. Lumley, 1972, A first course in turbulence, The MIT Press 
 
D.C. Willcox, 1998, Turbulence modelling for CFD (2nd ed.), DCW Industries Inc. 
 
 


