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The frequency and severity of wildfires throughout the west-
ern United States have increased in recent decades and are 
expected to worsen as the climate continues to warm1. 

Literature has linked these wildfire events and the smoke they 
generate to a variety of social and economic impacts, in particular 
health and infrastructure related damages2–4. Yet emerging evidence 
from studies on non-wildfire air pollutants suggests that wildfire 
smoke exposure could have much wider-ranging impacts, includ-
ing possible negative effects on human cognition5–20. Such effects 
would have broader implications for human capital formation and 
longer-term economic well-being, as well as for the social costs of a 
warming climate, but have not been documented in existing wild-
fire literature.

Recent studies have focused on the biological channels through 
which air pollution exposure might affect human health and have 
found that non-wildfire-related air pollution exposure is associated 
with higher likelihood of neuroinflammation5,6,21 and increased 
risks for Alzheimer’s, dementia and Parkinson’s disease22,23. 
Epidemiological and social science studies have begun to draw 
links between air pollution exposure and cognitive performance on 
real-world tasks, including declining performance in chess tourna-
ments8, stock trading9, call centre productivity10, umpire decisions11, 
cognitive assessments15,17–19 and online brain games12. Similar to our 
setting, a handful of studies have assessed how student test scores 
have responded to variation in exposure to ambient (non-wildfire) 
air pollution7,13,16,20,24,25. A recent study investigates the association 
between long-term ambient air pollution exposure and student 
test performance in the United States and finds negative impacts 
of increased ambient air pollution24. Other studies found that 
short-term changes in air pollution on the day of the exam led to 
declines in student performance7,13,16,20 and decreased future earn-
ings13. While these studies focus on the impact of air pollution on 
student test performance, to our knowledge there are no studies 
that focus on wildfire smoke particulate matter, which recent stud-
ies suggest could potentially be more harmful to human health than 
other sources of particulate matter4,26 and is likely the fastest grow-
ing source of air pollution in the United States27.

As wildfire activity has dramatically increased in recent decades 
due to a rapidly warming climate and a century of fire suppres-
sion practices across the western United States, wildfire smoke 

has become an increasingly important contributor to surface par-
ticulate matter <2.5 μg m−3 (PM2.5) concentrations27. Increasing 
wildfire-derived PM2.5 threatens to undermine decades of progress 
in improving overall PM2.5 concentrations—improvements brought 
about by changes in manufacturing practices, energy produc-
tion and legislation27–30. Furthermore, while exposure to ambient 
smoke-derived PM2.5 appears more evenly distributed across eco-
nomic and racial/ethnic groups than other sources of PM2.5

27, simi-
lar ambient exposures may differentially impact communities due 
to a variety of factors including differences in housing or school 
characteristics31,32 or differences in knowledge of or ability to under-
take protective behaviours. Ultimately, the differences in realized 
exposures could result in differential impacts across racial/ethnic 
and socioeconomic groups, as has now been documented for other 
environmental exposures33–38.

Here we quantify the impact of wildfire smoke exposure on learn-
ing outcomes across the United States, as measured by standardized 
test scores, and estimate potential heterogeneous impacts of this 
exposure across demographic and socioeconomic groups. We first 
develop estimates of local-level wildfire-smoke-attributable PM2.5 
exposures across the United States and over time, using a combi-
nation of high-resolution predicted PM2.5 data and satellite-derived 
wildfire smoke plumes39,40 (Methods). We then study the effect 
of cumulative smoke exposure during the school year on student 
learning outcomes, as measured through harmonized national 
test score data for students from 3rd–8th grades collected across 
nearly ~11,700 school districts between 2009–2016. These compre-
hensive longitudinal data allow us to plausibly isolate the effect of 
wildfire-smoke-attributable PM2.5 on student learning outcomes.

We model the effect of smoke exposure on student test per-
formance using fixed-effects regression models that account for 
unobserved time-invariant differences in smoke exposure and test 
scores across districts as well as time-trending year-grade-specific 
differences common to all locations (Methods). As there has been 
an upward trend in both wildfire smoke exposure and test per-
formance across our study period as well as large regional differ-
ences in average smoke exposure (Fig. 1), simple cross-sectional or 
time-series regressions could conflate overall trends or average dif-
ferences in smoke with other factors that affect learning outcomes. 
Rather than comparing across districts, our approach compares 
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particular districts to themselves over time as smoke exposure fluc-
tuates, after accounting for differences in grade-specific national 
averages between years. We control flexibly for other factors that 
may be correlated with wildfire activity and affect student test per-
formance (Methods), such as temperature and precipitation33,34,41. 
For our results to have a causal interpretation, there must be no 
additional unobserved factors that vary over time within districts 
(with different trends across districts) and are correlated with both 
district-specific wildfire smoke variation and local variation in test 
scores but are uncorrelated with district-specific weather variation; 
given the randomness in both where and when fires start and where 
wind blows smoke on a given day, we believe the existence of such 
a factor to be unlikely.

We then examine the heterogeneous impacts of wildfire smoke 
exposure by estimating whether responses differ between school and 
non-school days or by student age groups, levels of economic disad-
vantage, and/or race and ethnicity—dimensions along which earlier 
research has suggested environmental exposures and impacts might 
differ. Finally, to quantify the economic magnitude of smoke-related 
impacts, we explore how learning outcomes differ between a less 
severe compared to a more severe smoke year and provide estimates 
of the impact of wildfire-smoke-attributable PM2.5 in terms of stu-
dents’ lost future earnings, using literature-derived estimates of the 
relationship between test scores and earnings (Methods).

Results
We find that smoke exposure in the year leading up to the test nega-
tively affects test scores (Fig. 2). An additional 10 μg m−3 of cumula-
tive smoke PM2.5 in the year leading up to the exam decreases average 
test scores by 0.029% (95% confidence interval (CI): −0.045% to 
−0.013%) of a standard deviation. The effect is similar across 
subjects, with decreases in English language arts (ELA) scores of 
0.035% (95% CI: −0.052% to −0.017%) and math scores of 0.024% 
(95% CI: −0.041% to −0.006%) of a standard deviation for school 
districts across the United States from 2009–2016 (Fig. 2b). These 
results are robust to flexible functional forms such as higher-order 
polynomials of the smoke PM2.5 response relationship and are fairly 
linear (Fig. 2a). Random-effects estimates are qualitatively similar 
to our preferred fixed-effects estimates, although slightly smaller in 
magnitude (Supplementary Fig. 6).

Comparing school day vs non-school day exposure, we find that 
smoke exposure on school days has a statistically significant nega-
tive effect on test performance where an additional 10 μg m−3 of 
cumulative smoke PM2.5 on school days decreases average test scores 
by 0.044% (95% CI: −0.082% to −0.0006%) of a standard devia-
tion. Exposure on non-school days results in a smaller statistically 
significant negative effect, although the estimates are not statisti-
cally distinguishable from one another (Wald test for equivalence 
of coefficients: F1,5092 = 0.614, P = 0.433). We focus on cumulative  
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Fig. 1 | Spatiotemporal variation in wildfire smoke exposure and average test scores. a, Spatial distribution of the average number of days with smoke 
overhead from 2009–2016 for school districts58 across the continental United States. b, Temporal variation in the average number of smoke days for various 
census regions. Black line represents the average over the entire United States. c, Spatial distribution of test scores. Math and ELA scores are averaged 
across the study period from 2009–2016 for each district58 and are represented in standard deviations. d, Average test performance relative to the national 
reference cohort. Each state’s standardized test results are scaled to the nationally comparable (National Assessment of Educational Progress) test. Faded 
lines represent grade-specific performance and darker lines represent the average over all grades.
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smoke PM2.5 exposure on school days in the year before the exam as 
our measurement of exposure is at school locations and exposure on 
non-school days is uncertain.

While our main analysis clusters standard errors at the county 
level to account for correlation in errors across districts within the 
same county42, we conduct additional analysis using a random-
ization inference approach to test the sharp null hypothesis of no 
effect for additional smoke PM2.5 exposure on school days by ran-
domly permuting test scores across districts within a county. This 
approach non-parametrically estimates statistical significance and 
is beneficial in the presence of fuzzy clustering where smoke expo-
sure may be imperfectly correlated within the cluster43,44. We find 
that the estimated effect of school day smoke PM2.5 exposure is 
significantly different from the distribution of permuted effect esti-
mates (Fig. 2c). To additionally test whether regional time-trending 
unobservables could be driving our observed relationship between 
smoke exposure and test scores, we conduct an additional ran-
domization inference test where we randomly shuffle district-level 
smoke PM2.5 time series between districts within the same state; 
this is a demanding test, given the large within-state correlation in 
smoke exposures over time. Nevertheless, estimates when smoke 
time series are correctly matched to districts are in the tail (6th per-
centile) of the placebo treatment effect distribution (Supplementary 
Fig. 5), suggesting that state-level time-trending unobservables are 
unlikely driving our observed results (Supplementary Fig. 5).

Without access to data on evacuation orders, we test whether the 
identified effects are driven by smoke PM2.5 exposure or by direct 
wildfire effects by dropping districts that are certain distances from 
the nearest fire perimeter provided by the National Interagency Fire 
Center in that year, then running a similar regression as the main 
specification (Methods). We find that the identified effect estimates 
remain fairly stable up to 6.2 miles (10 km), which provides evidence 
that the effects identified are probably not driven by direct wildfire 
effects but rather by the smoke PM2.5 impacts (Supplementary Fig. 3).  

We also test whether the effects of smoke exposure during previous 
school years carry over into test performance in the current year. 
While results are somewhat noisy, point estimates suggest that learn-
ing impacts can persist into future years (Supplementary Table 4).

In line with previous studies that find negative effects of air pol-
lution exposure on younger children7,45,46, we find that among pri-
mary school children, an additional 10 μg m−3 of cumulative smoke 
PM2.5 on school days decreases scores by 0.122% (95% CI: −0.191% 
to −0.053%) of a standard deviation. However, these impacts are 
not apparent for secondary school students (6th–8th grade) (Fig. 3).

Consistent with previous work27,47, we find that exposure to ambi-
ent PM2.5 from wildfire smoke is largely similar across racial/ethnic 
subgroups (Supplementary Table 1) and across different levels of 
economic disadvantage (Supplementary Table 2). However, similar 
ambient exposures could result in very different impacts across sub-
groups due to potential differences in how pollutants infiltrate into 
indoor environments and/or differences in how increased wildfire 
smoke exposure interacts with baseline differences in other pol-
lutant exposures or other determinants of learning outcomes. We 
thus explore differential responses across subgroups, with groups 
defined as being above or below the median value of each variable 
(Methods), to a given exposure across districts with varying levels 
of economic disadvantage and proportions of non-White students. 
We emphasize that the estimated moderating effect of economic 
disadvantage or racial/ethnic categories in this analysis should be 
understood to reflect the possible effect of racist and/or discrimi-
natory policies or attitudes on outcomes, rather than as reflecting 
inherent characteristics of individuals or communities that fall into 
these categories.

We find that districts with high economic disadvantage and high 
proportion of non-White student population, as well as districts 
with low economic disadvantage and low proportion of non-White 
student population are more negatively affected by smoke PM2.5 
exposure compared with other subgroups (Fig. 3). For students 
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Fig. 2 | Effect of wildfire smoke exposure on student test scores. a, Test performance declines as a function of total accumulated daily smoke PM2.5 
during the school year before the test (only on school days). The line shows the regression point estimate of additional smoke PM2.5 (μg m−3) and the 
shaded area shows the bootstrapped 5th–95th percentile confidence intervals of 1,000 bootstrap samples. ΔTest performance is the change in test score 
relative to the national NAEP reference cohort, measured in percent of a standard deviation. b, Effect estimates of an additional 10 μg m−3 of smoke PM2.5 
in the year before the exam for school versus non-school day exposure, the combined average effect, and for ELA and Math. The circle markers represent 
the regression point estimates and the error bars show the 95% confidence intervals. c, Randomization inference test (1,000 permutations) showing 
the estimated effect size of an additional 10 μg m−3 of smoke PM2.5 on school days when smoke PM2.5 is randomly permuted across districts within each 
county. The observed effects are significantly different from the randomization test effects. For a, b and c, samples consist of n = 438,613 observations 
with 11,639 districts.
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in districts with high economic disadvantage and a high propor-
tion of non-White students, an additional 10 μg m−3 of cumulative 
smoke PM2.5 on school days lowered test scores by 0.085% (95% CI: 
−0.140% to −0.029%) of a standard deviation. Districts with low 
economic disadvantage and low proportion of non-White students 
also appeared negatively impacted by additional smoke PM2.5, with 
decreases of 0.063% (95% CI: −0.115% to −0.011%) of a standard 
deviation. When we stratify and run a separate regression for each 
racial/ethnic subgroup, we find that districts with a greater propor-
tion of Asian, Black or Hispanic students exhibit responses to addi-
tional school day smoke PM2.5 that are similar to each other but are 
different from districts with a greater proportion of White students 
(Supplementary Fig. 1).

To understand nationwide impacts of less severe versus more 
severe average smoke years on learning, we compared the 2011 ver-
sus 2016 school years, the former being the least smoky on average 
across districts and the latter being the most smoky year in our sam-
ple—albeit much less smoky than either 2018 or 2020, which are 
not in our sample. Taking into account heterogeneity in economic 
and racial/ethnic composition across school districts, we find sub-
stantial impacts of smoke exposure on learning across broad swaths 
of the United States (Fig. 4a). If smoke years continue to mirror 
the severity of 2011, we expect students to experience a decrease 
of 0.031% of a standard deviation in average test scores (median 
across districts), relative to a counterfactual of no smoke. However, 
if future wildfire events reflect severe smoke years, such as 2016, 
the median effect would be nearly an order of magnitude larger at 
0.207% of a standard deviation decrease in average test scores.

As a rough estimate of the economic impact of cumulative smoke 
PM2.5 exposure during the school year, we follow ref. 33 and calculate 
smoke impacts in terms of lost future earnings for students in our 
sample (Methods). We apply estimates from ref. 48 and estimate that 
district-average smoke PM2.5 exposure led to a reduction in the net 
present value of lost future earnings of ~$111 per student in 2016 
compared with ~$17 in 2011. The lost earnings of ~$111 per stu-
dent in 2016 totals nearly $1.7 billion in potential lost future income 
from smoke PM2.5 exposure when aggregating across all students 

in the United States. These impact estimates assume that increased 
future earnings due to teacher quality improvements are comparable 
to benefits of reducing smoke-attributable PM2.5 in the classroom 
and could be overstated if teacher quality improvements result in 
other non-test performance related benefits that increase students’ 
future earnings. However, impacts of this magnitude illustrate the 
potential benefits of reducing wildfire smoke PM2.5 exposure.

When we consider the cumulative losses over all study years and 
across subgroups (Fig. 4b), we estimate the net present value of lost 
future income to be roughly $544 million (95% CI: −$999 million 
to −$100 million) from smoke PM2.5 exposure in 2016 for districts 
with low economic disadvantage and low proportion of non-White 
students. For districts with high economic disadvantage and high 
proportion of non-White students, we estimate cumulative impacts 
to be $1.4 billion (95% CI: −$2.3 billion to −$477 million) from 
cumulative smoke PM2.5 exposure in 2016. Thus, of the roughly 
$1.7 billion in total costs during the smokiest year in our sample, 
82% of the costs we estimate were borne by economically disad-
vantaged communities of colour. The larger total burden in these 
communities is a function of both the more negative effect size and 
the relatively larger total number of students who attend schools in 
economically disadvantaged communities of colour (around 50% of 
the exposed students in our sample). This suggests that additional 
increases in future wildfire smoke exposure due to climate change 
will likely disproportionately harm these communities.

Discussion
Our study quantifies the impact of wildfire-smoke-attributable 
PM2.5 exposure, a rapidly growing source of particulate exposure 
throughout much of the United States27, on student learning out-
comes by leveraging a large sample of repeated observations. While 
test scores are an imperfect measure of student cognition, they are 
a common metric for evaluating student learning with relevance 
for long-term outcomes and opportunities13,16,48. We find that the 
negative impact of smoke exposure is present across test subjects, 
appears stronger on days when kids are in school, and affects com-
munities with differing levels of economic disadvantage and racial/
ethnic composition.

In a study of the effect of air pollution exposure on the day of test 
taking on test performance in Israel, it was found that a 1 standard 
deviation increase in PM2.5 (~16.7 Air Quality Index) led to a 3.9% 
of a standard deviation decrease in test scores13. A 10 μg m−3 increase 
in PM2.5 on the day of the National College Entrance Examination 
in China was estimated to reduce test scores by 4.6% of a standard 
deviation16. We find that a 1 standard deviation increase in the 
cumulative school day smoke PM2.5 (32.5 μg m−3) would result in 
a decrease in test scores of 0.14% (95% CI: −0.266% to −0.019%) 
of a standard deviation. These results suggest that contemporane-
ous air pollution exposure has at least an order of magnitude larger 
effect on test scores compared with smoke PM2.5 exposure in the 
year before the exam. One explanation for this is that, for exposure 
during the school year, students can catch up on non-smoky days 
after suffering learning decrements on smoky days; such catch-up is 
not possible when the exposure is on test day. Although not directly 
comparable, we find that wildfire smoke PM2.5 results in much larger 
declines in student test scores than a recent study that measured the 
effects of total PM on student learning using similar test score data24 
(see Supplementary Information for details). Larger effect sizes in 
our setting could be because wildfire smoke PM2.5 is more harmful4, 
or because variation in total ambient PM is correlated with other 
factors that affect learning in the opposite direction, as is commonly 
found in health studies49.

While our data do not allow direct identification of the mech-
anism by which wildfire smoke affects test performance, existing 
literature points to multiple plausible pathways. Evidence from air 
pollution and non-smoke PM2.5 suggests that exposures can have 
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Fig. 3 | Heterogeneous effects of school day smoke PM2.5 on test 
performance by grade, race/ethnicity and level of economic disadvantage. 
Left: effect estimate of an additional 10 μg m−3 of cumulative smoke PM2.5 
on school days for primary school (Grades 3–5) students and secondary 
school (Grades 6–8) students. Right: regression point estimates as circle 
markers and 95% confidence intervals for different intersecting levels of 
economic disadvantage and non-white racial/ethnic student population. In 
the primary vs secondary school analysis, the sample included n = 438,613 
observations with 11,639 districts. In the race/ethnicity and economic 
disadvantage analysis, the sample had n = 433,677 observations with 
11,623 districts due to some districts being without race/ethnicity and 
economic disadvantage information.
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direct biological impacts through neuroinflammation21 and can be 
particularly harmful for younger children as the natural barriers in 
their lungs are still developing and they have a higher rate of breath-
ing relative to their body size46. Additionally, particulate exposure 
can have near-term impacts on cognition12,13,16 and attention in 
class50, both of which could affect cumulative learning. As has been 
shown for other air pollutants51, wildfire smoke PM2.5 exposures 
could also increase student absenteeism, given the documented 
negative short-term effects of smoke exposure on child asthma 
and other respiratory outcomes52 that could keep kids from school. 
Evidence from the broader educational literature documents how 
cumulative absences affect later test performance14,53,54. Both chan-
nels provide mechanisms through which repeated short-term expo-
sure to wildfire smoke could have cumulative effects on learning 
and test performance over the school year.

In a study of the effect of heat on learning, an additional day with 
temperatures above 80 °F (26.7 °C) during the school year was found 
to decrease average test scores by 0.07% of a standard deviation34, 
which is roughly three times our estimated impact of an average 
(6 μg m−3) smoky day. Because there were on average more school 
days across the United States with temperature above 80 °F (32 days 
in their sample) than average days with smoke in the air in our sam-
ple (7 days per school year), this suggests that the effects of heat 

are currently a more important determinant of learning outcomes 
than smoke. Nevertheless, the number of days with smoke in the air 
and the average concentration of smoke PM2.5 on smoky days have 
both increased dramatically in the few years since the end of our 
study period27,47, suggesting a growing influence of smoke in more  
recent years.

Perhaps surprisingly, we find that estimated effects of smoke on 
learning are larger in both the least and the most disadvantaged 
communities. Similar effects at different ends of the disadvantage 
spectrum could be a result of multiple sources of heterogeneity 
that each have independent effects across groups. For instance, in 
districts with high economic disadvantage and high proportion 
of non-White students, differences in housing or school charac-
teristics—for example, a more permeable building envelope, dif-
ferences in available filtration or lower access to air conditioning 
in disadvantaged schools—could allow more ambient pollution 
to infiltrate into and remain in indoor environments31–33,47. While 
the limited work on infiltration of wildfire smoke does suggest 
some role for factors such as income, race/ethnicity and housing 
quality in predicting infiltration into homes32,47, more widespread 
measurement in schools will be needed to understand whether 
differential infiltration can help explain the heterogeneous results 
we find.
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earnings are provided on the right and represent the total changes in future earnings across all students that fall into the matching year and subgroup, with 
5th–95th percentile range across districts in parentheses.
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One potential explanation for the observed negative impacts in 
low-disadvantage communities is if the marginal effect of additional 
exposure declines at higher baseline PM2.5 exposure. Such a non-
linear relationship has been documented in health impacts stud-
ies of wildfire specifically55 and air pollution more broadly49,56, and 
could be explained as the result of adaptive investments in com-
munities accustomed to higher average exposures, or alternatively 
as the result of differences in the relative importance of other deter-
minants of learning (for example, school funding or teacher qual-
ity) that happen to be correlated with baseline pollution exposure. 
Indeed, when we consider the interaction between baseline PM2.5 
terciles and smoke PM2.5, we find that the effects of smoke PM2.5 
exposure are more negative for districts with lower average base-
line PM2.5 levels (Supplementary Fig. 2). Additionally, a majority 
of districts with low economic disadvantage and low proportion of 
non-White students within our sample are in the lowest baseline 
PM2.5 bin (Supplementary Table 3). However, because other sub-
groups also appear to have many districts in the lowest baseline 
PM2.5 bin, this explanation is unlikely to fully explain the heteroge-
neous effects we find.

Estimates of the present value of lost future earnings due to 
decreased learning outcomes resulting from smoke exposure sug-
gest that in very smoky years, wildfire-attributable-smoke PM2.5 
would effectively decrease the net present value of future earnings 
by $55,500 per school (for a school with 500 students) and by nearly 
$1.7 billion across the United States, with ~80% of these impacts 
being in disadvantaged communities of colour. While these are 
rough calculations, as wildfires and the associated smoke events 
increasingly affect school districts across the United States, estimates 
such as these can inform cost-benefit analyses of investments aimed 
at reducing smoke PM2.5 exposures. If we consider the combined 
effect of smoke exposure (aggregated total smoke PM2.5 combin-
ing school and non-school days smoke PM2.5) and conduct a simi-
lar calculation as shown in Fig. 4b, we find much larger estimated 
impacts across all years and subgroups (Supplementary Fig. 4) due 
to the greater amount of smoke PM2.5 on non-school days (includes 
summer months) compared with school days. As we cannot be sure 
that students remain around their school districts during summer 
months and other non-school days, our analysis primarily focuses 
on school day exposures.

Compared with using satellite-derived smoke plume anno-
tations alone, our approach provides improved estimates of 
smoke-attributable PM2.5 by combining annotations with 
ground-level predicted PM2.5 data to separate smoke PM2.5 from 
background PM2.5. However, the smoke plume annotations could 
be noisy because they are drawn over multiple hours and usually 
only a couple of times per day57. Furthermore, while smoke plume 
annotations are able to capture relatively new smoke plumes that are 
visible through satellite imagery, plumes that remain in the atmo-
sphere for multiple days after a wildfire event could be dispersed 
and difficult to identify through satellite imagery. This could result 
in underestimation of smoke PM2.5 present, due to non-discernible 
smoke plumes and a lack of smoke plume annotations on these 
days. Future work to improve the precision of the smoke annota-
tions could lead to more precise estimates of smoke-attributable 
PM2.5. Additionally, we currently do not account for the specific 
district test taking dates and instead remove any smoke observa-
tions between March and May. The exposure calculation could be 
improved by compiling district-specific testing dates, which would 
allow us to more precisely measure exposures before the exam. We 
also note that as our unit of observation is at the district, year and 
grade level, we are unable to investigate more granular levels of het-
erogeneity, such as at the individual level.

Our work contributes to a growing body of evidence demon-
strating the cognitive, health and social harms of air pollution in 
general, and wildfires specifically, and shows how disparities in 

these impacts across socioeconomic and racial/ethnic groups can 
emerge even when there are negligible differences across groups 
in ambient exposures. Recent literature has suggested that wildfire 
smoke particulate matter is potentially more harmful than other 
sources of particulate matter and impacts to student learning could 
have an out-sized influence on future outcomes and long-term eco-
nomic well-being. Hence, we provide rough estimates of the cost 
of wildfire smoke exposure to illustrate the magnitude of potential 
benefits that protective investments beneficial to student learning 
can provide, such as improving classroom filtration or creating 
clean-air shelters in districts where clean indoor air at home may be 
inaccessible. Our estimates uncover yet another substantial cost of a 
warming climate, with future warming-driven increases in wildfire 
activity likely to worsen learning outcomes.

Methods
Measuring wildfire-smoke-attributable PM2.5. To generate estimates of 
wildfire-smoke-attributable PM2.5 across all school districts for all study years, 
we merged satellite-derived smoke plume data from the National Environmental 
Satellite, Data, and Information Service (NESDIS) Hazard Mapping System (HMS) 
with gridded estimates of daily PM2.5 concentrations from refs. 39,40. We then 
estimated smoke-attributable PM2.5 as location- and period-specific anomalous 
PM2.5 on days in which the plume data indicated that smoke was overhead. Plume 
data were derived from manual annotations by trained analysts, using a variety of 
remote sensing products including visible-band imagery from the GOES satellites 
of the National Oceanic and Atmospheric Administration, multiple times per 
day across the United States57. In total, we used nearly 200,000 individual smoke 
plumes between 2008–2016.

The predicted PM2.5 data39,40 were provided as daily PM2.5 concentrations for 
all-source PM2.5 (not just wildfire PM2.5) for the contiguous United States in a 
1 km grid from 2000–2016. The predictions were made using an ensemble of three 
machine learning models including neural networks, random forests and gradient 
boosted trees. Each of the models comprised multiple explanatory variables, 
including satellite observations, land-use variables, chemical transport predictions 
and other variables. The authors note that the ensemble model achieved a 
performance of r2 = 0.86 for daily PM2.5 predictions.

To isolate PM2.5 from wildfires, we followed ref. 47 and calculated 
smoke-attributable PM2.5 as the deviation from location-specific median PM2.5 
on non-smoke days in the same month, with the median calculated over a 3-year 
window centred on the current year. Specifically, the smoke-attributable PM2.5 
anomaly was calculated by subtracting the month-specific 3-year non-smoke day 
median estimated from the predicted PM2.5 at each school district on days with a 
smoke plume overhead. After we obtained the smoke PM2.5 anomalies, we set this 
smoke PM2.5 variable to 0 for non-smoke days and the positive anomaly for days 
with a plume overhead. Smoke days with negative anomaly values were also set 
to 0. The resulting measure of smoke PM2.5 isolates the smoke component from 
overall PM2.5 as long as, on average, other PM2.5 sources are not also anomalously 
high on days when smoke is in the air—a plausible assumption given the large 
degree of temporal and spatial randomness in when and where fires start and 
where plumes go.

Assigning smoke PM2.5 exposure to school districts. We calculated a 
student-population weighted average of school level exposure to estimate 
aggregate exposure at the district level. We further delineated school day exposure 
versus non-school day exposure, specifying non-school days as weekends and 
federal bank holidays throughout the year and all days from June 15 to August 15. 
Because standardized testing in the United States is conducted at various points 
throughout the spring, usually between March and May, our analysis focused on 
exposures from the previous June to February. For this analysis, we focused on 
school years between 2009–2016 as the predicted PM2.5 data are only available 
between 2000 and 2016.

Outcome and covariate data. Test score data were compiled by Stanford 
University and made available through the Stanford Education Data Archive 
(SEDA)58. The SEDA data are derived from state-level standardized accountability 
tests for math and English Language Arts (ELA) that are administered to all 
public-school students. These tests are typically taken between March and 
May and raw scores are provided in aggregated form by the US Department of 
Education. The SEDA team constructed the dataset by converting state-specific 
proficiency data to a nationally comparable dataset by scaling the state results 
using a nationally representative sample from the National Assessment of 
Educational Progress (NAEP). NAEP is a test taken in every state by a random 
sample of students in Grades 4 and 8 in math and ELA in odd years (for example, 
2009, 2011, 2013, 2015, 2017 and 2019). SEDA interpolates for grades and years 
where the NAEP was not administered and uses each states’ grade, year and 
subject results on the NAEP to rescale the state-standardized accountability tests58. 
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For additional details about how the dataset was created and the calculations 
involved in scaling the state scores to a national dataset, please see ref. 58. The 
SEDA data contain nationally comparable test scores for students in Grades 3–8 
from 2009–2018. These test scores are broken down into district-level results for 
both math and ELA subjects. Rather than represent an absolute score, the metric 
provided in the dataset is a standardized score within subject and grade, relative 
to representative cohorts who had taken the NAEP assessments59. Therefore, a 
score of 0.25 for math means that an average student in that district performed 
0.25 of a standard deviation higher than the reference cohort that took the NAEP 
assessment. The primary outcome we considered is the average test score for ELA 
and math at the district-year-grade level.

In addition to calculating an average treatment effect across aggregated data 
in our main model specification, we also investigated heterogeneous effects using 
district-level racial/ethnic and economic disadvantage covariates. Specifically, 
the level of economic disadvantage is measured by the Federal EdFacts data 
system and is typically defined using the proportion of students eligible for free 
or reduced-price lunch60. The proportion of non-White students in a district 
was calculated by subtracting the proportion of White students from 1, where 
the proportion of White students is collected by the Common Core of Data and 
aggregated by the SEDA team to the district level59.

We used gridded (4 km × 4 km) temperature and precipitation data produced 
by the Parameter elevation Regressions on Independent Slopes Model (PRISM) 
Climate Group at Oregon State University41. We extracted the maximum daily 
temperature at each school and took a weighted average using the student 
population at the schools that belong to that district. As with the weighting for 
smoke exposure, the student population data were collected from the National 
Center for Education Statistics. We then created bins by counting the number of 
days in the year before the exam with maximum temperatures from 0 °F (−17.7 °C) 
to 80 °F (26.7 °C), in 10 °F (5.5 °C) increments. All days less than or equal to 0 °F 
(−17.7 °C) were grouped into 1 bin and all days greater than 80 °F (26.7 °C) were 
grouped into another bin. We processed the daily precipitation data similarly and 
extracted the daily precipitation measurements at each school, then calculated the 
total annual precipitation at the district level.

Estimating the effect of smoke PM2.5 on student performance. Our main 
regression specification is as shown in equation (1):

Scoreigy = β1SmokePMschool
iy + β2SmokePMnon−school

iy

+f(Xiy) + ηi + γyg + ϵigy
(1)

Here, ‘Score’ represents the scaled standardized score for each district i in grade 
g and year y. The district fixed effect ηi is a separate intercept (dummy variable) 
for each district (that is, 11,639 dummies with one for each district) that accounts 
for any average differences in smoke exposure or test scores across districts. 
This empirical approach ensures that we are not comparing districts that might 
inherently be very different from each other. The year-grade fixed effects γyg (that is, 
6 dummies for each of the grades in each of the 8 years for a total of 48 dummies) 
account for differences in year-grade-specific exposures or outcomes that affect 
all districts across the United States, such as overall trends in test scores or in 
average differences between test scores across grades. f(X) represents a vector of 
controls including the number of days with maximum temperatures in each of the 
10 °F (5.5 °C) bins, which controls for potential nonlinear effects of temperature 
within the district for the year preceding the test, and total annual precipitation 
in the year before the exam. ‘SmokePM’ is defined as the total amount of 
smoke-attributable PM2.5 in the year before the exam in our primary specification. 
We define SmokePMschool and SmokePMnon-school as the total cumulative smoke 
PM2.5 in a preceding year y within district i between June and February on school 
and non-school days, respectively. β1 represents the average effect of an additional 
μg m−3 of cumulative smoke PM2.5 on school days on test performance. β2 
represents the average effect of an additional μg m−3 of cumulative smoke PM2.5 on 
non-school days on test performance. To estimate the subject-specific coefficient 
estimates (Fig. 2b), we replaced mean score Scoreigy with the subject-specific 
scores and considered the cumulative ‘SmokePM’ (both school and non-school) 
in the year before the exam. We clustered standard errors by county to account for 
arbitrary within-unit autocorrelation in ϵigy

42 and weighted districts by the total 
number of students who took the test provided in the SEDA dataset. Estimation 
of the main model was carried out using the fixest package (0.8.4)61 in the R 
programming language (4.0.4). Both the level of clustering and student population 
weights were provided to the fixest model object when fitting the regression model. 
In all statistical tests, we assumed normality but did not formally test for it and all 
tests of significance were two-tailed.

To investigate whether the observed effect is due to random noise, we 
conducted a randomization inference test and took the observations within a 
county and randomly permuted the school day smoke PM2.5 variable of district, 
year and grade observations without replacement while keeping other variables 
constant. Then we ran the same regression as in our main specification and 
recorded the school day smoke PM2.5 coefficient estimate. We repeated this 
procedure 1,000 times and plotted out the distribution of estimated effects.

We also conducted secondary analyses (equation 2) looking at the 
heterogeneous effects of smoke exposure on test outcomes. To examine these 
effects, we studied whether the effects of smoke PM2.5 differed across different 
grade levels and a combination of economic disadvantage and race/ethnicity, using 
the following specification:

Scoreigy =
∑

n
βn( n ∗ SmokePMschool

iy )

+
∑

n
βn( n ∗ SmokePMnon−school

iy )

+f(Xiy) + ηi + γyg + ϵigy

(2)

Here, n represents an indicator function for whether or not the observation i falls 
into a specific bin n. In the primary vs secondary school-aged student analysis, 
grades were divided into grade buckets with Grades 3–5 grouped into ‘primary’ and 
Grades 6–8 into ‘secondary’. Then as shown in the equation above, we considered 
the interaction between the grade bucket and smoke PM2.5 experienced in the 
year before the exam to estimate the effect on student test scores in that district. 
Similarly, in the race/ethnicity and economic disadvantage heterogeneity analysis, 
we divided districts into ‘High’ or ‘Low’ categories on the basis of thresholding 
at the median value for race/ethnicity and economic disadvantage variables. We 
then estimated heterogeneous effects using a regression model that considers how 
the interaction of the district’s level of non-white population, level of economic 
disadvantage and smoke PM2.5 experienced in the year before the exam is 
associated with student test scores in that district. The remainder of the equation is 
similar to equation (1).

In Supplementary Fig. 1, we stratified by racial/ethnic group and ran separate 
regressions for Asian, Black, Hispanic and White subgroups. These regressions are 
similar to equation (2) above but instead consider how the interaction between 
‘High’ or ‘Low’ levels of Asian, Black, Hispanic or White population, ‘High’ or ‘Low’ 
levels of economic disadvantage and smoke PM2.5 experienced in the year before 
the exam is associated with student test scores in that district. Again, these racial/
ethnic group stratified regressions also consider the same fixed-effects (dummy 
variables) and covariates as in the main specification.

Projecting the effect of smoke PM2.5 as lost future income. To translate the 
effect estimates into the net present value of lost future earnings, we followed the 
approach used in ref. 33. Specifically, we assumed that the relationship found in ref. 
48 holds, which estimated that a 1 standard deviation increase in teacher quality 
raised average test scores by 0.13 standard deviations and resulted in a net present 
value of $7,000 in future increased earnings for 12-year-old students. Therefore, if 
the estimated effect of an additional μg m−3 of smoke PM2.5 is a decrease of 0.01% 
of a standard deviation and the average smoke PM2.5 experienced in a year is 
10 μg m−3, then we calculate the average effect as 0.01% × 10 = 0.1%. We can then 
apply the conversion in ref. 48 and calculate that 0.001×7000

0.13 = $53.85 on average per 
student for that year of smoke PM2.5 exposure.

In Fig. 4b, we plot the average net present value change in future earnings 
for each district as an individual tick mark. For each of the four economic 
disadvantage and racial/ethnic subgroups, we drew 3,000 samples from a normal 
distribution, with the mean centred at the matching subgroup coefficient (equation 
2) and the standard deviation set to the estimated standard error. We then merged 
this with district information by matching on the districts’ subgroup for each 
year. From this data, we estimated the district-specific average impacts by year 
and we sampled 1 observation out of the 3,000 samples to show as a tick mark. 
Additionally, we used the sampled data to estimate 95% interval estimates for the 
cumulative changes in net present value of future earnings.

Calculating distance to nearest fire perimeter. We calculated distances from 
schools to the nearest fire perimeter in each year provided by the National 
Interagency Fire Center62. Then, we took an average of the minimum school-to-fire 
distances to get estimates of the average distance to the nearest fire for each district. 
While evacuation zone distances vary, recent studies of wildfire evacuations in 
California suggest that short-distance evacuations are much more common than 
longer distance evacuations to destinations outside of the county of residence63. 
Additionally, a 1.5 mile (2.4 km) distance is often cited as the distance that forest fire 
embers can travel and ignite flammable materials at distant locations beyond the 
fire front64. Given this, we iteratively dropped school districts that are 1 km, 3 km, 
5 km, 10 km and 20 km away from the nearest fire perimeter and for each drop 
distance, we ran a similar regression as our main specification without the dropped 
school districts. We found that the identified effects are consistent up to dropping 
districts within 10 km of the nearest fire perimeter (Supplementary Fig. 3).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The weather data used in this study are available through the Parameter elevation 
Regressions on Independent Slopes Model (PRISM) Climate Group at Oregon 
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State University (https://prism.oregonstate.edu). Student test performance and 
district-level covariate data are available through the Stanford Education Data 
Archive (SEDA) (https://purl.stanford.edu/db586ns4974). School location and 
student population data are available through the National Center for Education 
Statistics (NCES). Fire perimeter data used to calculate the distance of school 
districts to fire perimeters are available through the National Interagency Fire 
Center (NIFC) (https://data-nifc.opendata.arcgis.com/datasets/nifc::interage
ncy-fire-perimeter-history-all-years). Smoke plume annotations are available 
through the National Environmental Satellite, Data and Information Service 
(NESDIS) Hazard Mapping System (HMS) (https://www.ospo.noaa.gov/Products/
land/hms.html#data). Daily gridded estimates of PM2.5 concentrations are available 
from Di et al. (2021) (https://doi.org/10.7927/0rvr-4538; https://doi.org/10.1016/j.
envint.2019.104909). Processed data to replicate the results in the main text 
and Supplementary Information are available at https://github.com/jeffwen/
wildfire_smoke_education_public.

Code availability
The code to replicate the results and figures in the main text and 
supplementary material are available at https://github.com/jeffwen/
wildfire_smoke_education_public.
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